People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Laudani, Antonio Andrea Maria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Numerical simulation of lightning strike damage to wind turbine blades and validation against conducted current test datacitations
- 2021Estimation of Contact Resistivity in Lightning Protection Equipotential Bonding Joints of Wind Turbine Bladescitations
- 2021Lightning Protection of Wind Turbine Blades – How Supersizing Has Created New Challenges for Nanodielectrics Researchcitations
Places of action
Organizations | Location | People |
---|
article
Estimation of Contact Resistivity in Lightning Protection Equipotential Bonding Joints of Wind Turbine Blades
Abstract
Modern lightning protection systems for wind turbine blades with conducting structural elements, e.g., carbon fiber reinforced polymer (CFRP) spar caps, contain equipotential bonding joints to prevent sparking during strikes. Significant current levels are experienced through the joints and the characterization of the electrical contact at the bonding regions is essential for reliable protection. Therefore, this article aims to characterize the contact resistivity of several equipotential bonding joints. The proposed methodology first measures the total resistance of the samples, and then the bulk resistance of the conductive elements is computed using the finite-element method. The latter is required to predict the spreading effects in CFRP components due to the strong anisotropic nature of such materials. After that, the contact resistance is calculated by subtracting the predicted bulk resistances from the measured total resistances. The developed procedure was applied to three typical equipotential bonding materials: expanded copper foil (ECF), biaxial (BIAX) CFRP, and unidirectional (UD) CFRP. Both ECF and BIAX CFRP showed superior contact quality than the UD CFRP, with one to two orders of magnitude smaller contact resistivity.