Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Donaldson, Craig

  • Google
  • 2
  • 10
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Fivefold helically corrugated waveguide for high-power w-band gyro-devices and pulse compression9citations
  • 2018CNC machined helically corrugated interaction region for a THz gyrotron traveling wave amplifier17citations

Places of action

Chart of shared publication
Hiscock, Peter
1 / 1 shared
Cross, Adrian
1 / 2 shared
Zhang, Liang
2 / 9 shared
He, Wenlong
2 / 2 shared
Harris, Michael
2 / 4 shared
Beardsley, Matthew J.
1 / 1 shared
Huggard, Peter G.
1 / 3 shared
Whyte, Colin
1 / 1 shared
Hugard, Peter G.
1 / 1 shared
Beardsley, Mat
1 / 3 shared
Chart of publication period
2021
2018

Co-Authors (by relevance)

  • Hiscock, Peter
  • Cross, Adrian
  • Zhang, Liang
  • He, Wenlong
  • Harris, Michael
  • Beardsley, Matthew J.
  • Huggard, Peter G.
  • Whyte, Colin
  • Hugard, Peter G.
  • Beardsley, Mat
OrganizationsLocationPeople

article

Fivefold helically corrugated waveguide for high-power w-band gyro-devices and pulse compression

  • Hiscock, Peter
  • Cross, Adrian
  • Zhang, Liang
  • He, Wenlong
  • Harris, Michael
  • Donaldson, Craig
  • Beardsley, Matthew J.
  • Huggard, Peter G.
  • Whyte, Colin
Abstract

The design, simulation, manufacture and measurement of a W-band five-fold (5F) helically corrugated waveguide (HCW) is reported. The 5F HCW is based on the coupling of the traveling TE31 and near cut-off TE22 modes to create an operating eigenwave. The fabricated test structure has circular waveguide ports and features elliptical polariser sections and broadband TE11 to TE31 mode converters on either side of the 5F HCW. The optimised mode converter design, based on a four-fold (4F) HCW, has a predicted power conversion efficiency greater than 90% from 89 to 102.5 GHz, and 96% peak efficiency at 94 GHz. The optimization of the 5F HCW geometry produced an eigenwave suitable for gyro-devices, but the optimization could equally well have been directed to applications such as pulse compression and microwave undulators. Analysis of simulated electric field profiles showed that the propagating power in the 5F HCW was increased by a factor of 6 over that in the 3F HCW at equivalent peak electric field strength. This is due to the larger diameter of the waveguide. Test structures were manufactured through a combination of precision machining of a sacrificial mandrel, copper growth by electroforming followed by removal of the aluminium mandrel by chemically etching. Measurements of the 5F HCW structure’s dispersion showed excellent agreement with the prediction over the design range of 90 to 98 GHz.

Topics
  • impedance spectroscopy
  • dispersion
  • simulation
  • aluminium
  • strength
  • copper
  • etching
  • power conversion efficiency