Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liu, Wei

  • Google
  • 1
  • 4
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Low-Resistivity Long-Length Horizontal Carbon Nanotube Bundles for Interconnect Applications—Part I: Process Development25citations

Places of action

Chart of shared publication
Cassell, Alan M.
1 / 1 shared
Li, Hong
1 / 14 shared
Kreupl, Franz
1 / 21 shared
Banerjee, Kaustav
1 / 1 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Cassell, Alan M.
  • Li, Hong
  • Kreupl, Franz
  • Banerjee, Kaustav
OrganizationsLocationPeople

article

Low-Resistivity Long-Length Horizontal Carbon Nanotube Bundles for Interconnect Applications—Part I: Process Development

  • Cassell, Alan M.
  • Li, Hong
  • Kreupl, Franz
  • Liu, Wei
  • Banerjee, Kaustav
Abstract

Although horizontally-aligned carbon nanotube (HACNT) interconnects are the most common scenarios that have been modeled and analyzed in theoretical research, fabrication of HACNT test structures has remained an enigma until now. Through addressing several fabrication challenges, this paper reports a novel process that enables fabrication of high-density, long (over hundred microns), and thick (up to micrometer) HACNT interconnects. Furthermore, horizontal CNT-based 2-D Manhattan structure is demonstrated by properly designing the catalyst and flattening process. These structures are crucial for building angled interconnects and on-chip passive devices. In addition, to address the contact issue between metal and thick HACNT bundles, a multistep lithography combined with specifically designed metal deposition technique is performed to ensure full contact configuration. Using such a process, test structures with arrays of various sizes of HACNT bundle interconnects are fabricated. The process developed in this paper provides an important platform for future research and technology development of CNT-based interconnects and passive elements.

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • Carbon
  • resistivity
  • nanotube
  • lithography
  • aligned