Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, F. M.

  • Google
  • 1
  • 13
  • 51

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors51citations

Places of action

Chart of shared publication
Unalan, H. E.
1 / 1 shared
Milne, W. I.
1 / 18 shared
Hsieh, G.-W.
1 / 1 shared
Newton, Marcus
1 / 4 shared
Amaratunga, G.
1 / 3 shared
Robinson, I.
1 / 3 shared
Warburton, P. A.
1 / 3 shared
Beecher, P.
1 / 1 shared
Flewitt, A. J.
1 / 3 shared
Hiralal, P.
1 / 2 shared
Dalal, Sharvari
1 / 1 shared
Stott, J. E.
1 / 1 shared
Nathan, A.
1 / 2 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Unalan, H. E.
  • Milne, W. I.
  • Hsieh, G.-W.
  • Newton, Marcus
  • Amaratunga, G.
  • Robinson, I.
  • Warburton, P. A.
  • Beecher, P.
  • Flewitt, A. J.
  • Hiralal, P.
  • Dalal, Sharvari
  • Stott, J. E.
  • Nathan, A.
OrganizationsLocationPeople

article

Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors

  • Unalan, H. E.
  • Milne, W. I.
  • Hsieh, G.-W.
  • Li, F. M.
  • Newton, Marcus
  • Amaratunga, G.
  • Robinson, I.
  • Warburton, P. A.
  • Beecher, P.
  • Flewitt, A. J.
  • Hiralal, P.
  • Dalal, Sharvari
  • Stott, J. E.
  • Nathan, A.
Abstract

This paper reports on the synthesis of zinc oxide (ZnO) nanostructures and examines the performance of nanocomposite thin-film transistors (TFTs) fabricated using ZnO dispersed in both n- and p-type polymer host matrices. The ZnO nanostructures considered here comprise nanowires and tetrapods and were synthesized using vapor phase deposition techniques involving the carbothermal reduction of solid-phase zinc-containing compounds. Measurement results of nanocomposite TFTs based on dispersion of ZnO nanorods in an n-type organic semiconductor ([6, 6]-phenyl-C61-butyric acid methyl ester) show electron field-effect mobilities in the range 0.3-0.6 cm2 V-1s-1, representing an approximate enhancement by as much as a factor of 40 from the pristine state. The on/off current ratio of the nanocomposite TFTs approach 106 at saturation with off-currents on the order of 10 pA. The results presented here, although preliminary, show a highly promising enhancement for realization of high-performance solution-processable n-type organic TFTs

Topics
  • Deposition
  • nanocomposite
  • dispersion
  • compound
  • polymer
  • phase
  • mobility
  • thin film
  • zinc
  • semiconductor
  • ester