People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grogger, Werner
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Three-dimensional distribution of individual atoms in the channels of beryl
- 2024Three-dimensional distribution of individual atoms in the channels of berylcitations
- 2024Phase Transitions and Ion Transport in Lithium Iron Phosphate by Atomic‐Scale Analysis to Elucidate Insertion and Extraction Processes in Li‐Ion Batteriescitations
- 20232D and 3D STEM Imaging and Spectroscopy: Applications and Perspectives in View of Novel STEM Infrastructure
- 2023Phase analysis of (Li)FePO4 by selected area electron diffraction and integrated differential phase contrast imaging
- 2022Phase Analysis of (Li)FePO4 by Selected Area Electron Diffraction in Transmission Electron Microscopy
- 2022Quantifying Ordering Phenomena at the Atomic Scale in Rare Earth Oxide Ceramics via EELS Elemental Mapping
- 2022Challenges in the characterization of complex nanomaterials with analytical STEM
- 2021Spectroscopic STEM imaging in 2D and 3D
- 2018Intermetallic Compound and Void Kinetics Extraction From Resistance Evolution in Copper Pillars During Electromigration Stress Testscitations
- 2002Quantitative measurement of Cr segregation in Co0.8-xCr xPt0.1B0.1 recording media by scatter diagram analysiscitations
Places of action
Organizations | Location | People |
---|
article
Intermetallic Compound and Void Kinetics Extraction From Resistance Evolution in Copper Pillars During Electromigration Stress Tests
Abstract
Die-to-wafer interconnections such as copper pillars play a vital role in order to enable 3-D integration. This interconnection type allows increasing the density of interconnects but the occurrence of defects, especially intermetallic compounds (IMC) and Kirkendall voids, may reduce the lifetime at elevated operating conditions. This paper investigates the physical degradation mechanisms in copper pillars and micro-bumps, caused by IMC and void formation during stress tests such as electromigration (EM) and high temperature storage. The resistance evolution of the tested interconnections motivated the derivation of a novel analytical model to separate the resistance increases caused by IMC growth and void formation. This allows the real time monitoring of changes in the kinetics, which gives a better understanding of the underlying physics and of the failure mechanisms. In order to validate the model, an additional test series on copper pillars under EM stress with varying conditions is conducted and the model is applied on the monitored resistance evolution. The different stress conditions allowed the extraction of the IMC formation activation energy, which is compared against parameter extraction using classical mean time to failure analysis as well as material parameters of IMC growth that are already reported in the literature.