People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Munagala, Sp
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Fabrication of Insulation Coatings on Additively Manufactured CuCrZr Electrical Windingscitations
- 2024Investigation of Post Processing and Robust Insulation of High-Performance Additively Manufactured Al-Fe-Zr Electrical Machine Windingscitations
- 2024Electrothermal power cycling of 15 kV SiC PiN diodescitations
- 2022Electrical Conductivity of Additively Manufactured Copper and Silver for Electrical Winding Applicationscitations
Places of action
Organizations | Location | People |
---|
article
Fabrication of Insulation Coatings on Additively Manufactured CuCrZr Electrical Windings
Abstract
To lower the ac losses in electrical machines, additive manufacturing (AM) has been adopted to exploit the geometrical freedom in winding design. However, AM brings about new challenges such as surface roughness and porosity which can create difficulties for post processing of the windings such as applying insulation coatings. The article investigates the influence of surface roughness (profile) of AM-processed CuCrZr as a potential candidate for electrical windings in terms of geometry, surface roughness, porosity, and oxidation on their insulation. The feasibility and characteristics of insulations applied via three processing techniques namely powder, spray, and dip coating are compared. The entire process is quantified via techniques such as computed tomography, surface profilometry, optical microscopy, X-ray photon spectroscopy, and breakdown voltage (BV) at different stages of the coating process. The study also includes coating on a commercial rectangular copper wire as a reference. The initial assessment of coatings concludes that surface roughness and the coating process are both vital determinants for the success of insulating AM components. Basic surface smoothening is needed to get rid of burs and the spray coating technique was the best among others for its capability to produce conformal coating.