Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wong, Timothy

  • Google
  • 2
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Modeling of the transient electric field in multilayer dielectric composites under impulsive HV energization4citations
  • 2021The electric field inside a gas cavity formed at a solid-solid dielectric interface stressed with HV impulsecitations

Places of action

Chart of shared publication
Macgregor, Scott
2 / 13 shared
Timoshkin, Igor
2 / 10 shared
Given, Martin
1 / 6 shared
Wilson, Mark
2 / 16 shared
Given, M.
1 / 2 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Macgregor, Scott
  • Timoshkin, Igor
  • Given, Martin
  • Wilson, Mark
  • Given, M.
OrganizationsLocationPeople

article

Modeling of the transient electric field in multilayer dielectric composites under impulsive HV energization

  • Macgregor, Scott
  • Wong, Timothy
  • Timoshkin, Igor
  • Given, Martin
  • Wilson, Mark
Abstract

<p>This article presents the theoretical analysis of composite electrical insulation, formed from layered dielectric materials and subjected to impulsive energization. The 1-D planar and cylindrical geometries were considered, consisting of an arbitrary number of layers with arbitrary relative permittivity and electrical conductivity. Analytical solutions have been successfully derived for the time-dependent electric field inside the i th layer. To demonstrate the usage of the model under complex multilayer topologies where analytical solutions are nontrivial, the characteristics of a 20-layer-graded composite under microsecond and sub-microsecond impulses were analyzed and validated against a finite-element (FE) solver. Results indicate that the transient electric field response under impulsive energization is strongly dependent on the interplay between the composite relaxation time constants and the characteristic timescales associated with the applied impulse. The model is a further development for the design and coordination of functionally graded materials (FGMs) and composite insulation for high-voltage (HV) system design. This is particularly relevant under fast-rising impulsive conditions as often encountered in many pulsed power applications.</p>

Topics
  • impedance spectroscopy
  • dielectric constant
  • layered
  • composite
  • electrical conductivity