Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saha, D.

  • Google
  • 4
  • 9
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2018Designing multi-layer polymeric nanocomposites for EM shielding in the X-band1citations
  • 2017Future nanocomposites : exploring multifunctional multi-layered architecturescitations
  • 2017Epoxy-hBN nanocomposites30citations
  • 2015Space Charge analysis of epoxy based nanocompositescitations

Places of action

Chart of shared publication
Roch, Anne
2 / 4 shared
Cardinaels, Ruth M.
2 / 19 shared
Anderson, Pd Patrick
2 / 50 shared
Engels, Tom A. P.
2 / 33 shared
Morshuis, P. H. F.
1 / 15 shared
Anisimov, Andrei
1 / 8 shared
Groves, Roger
1 / 29 shared
Tsekmes, I. A.
1 / 4 shared
Kochetov, R.
1 / 13 shared
Chart of publication period
2018
2017
2015

Co-Authors (by relevance)

  • Roch, Anne
  • Cardinaels, Ruth M.
  • Anderson, Pd Patrick
  • Engels, Tom A. P.
  • Morshuis, P. H. F.
  • Anisimov, Andrei
  • Groves, Roger
  • Tsekmes, I. A.
  • Kochetov, R.
OrganizationsLocationPeople

article

Epoxy-hBN nanocomposites

  • Morshuis, P. H. F.
  • Anisimov, Andrei
  • Groves, Roger
  • Saha, D.
  • Tsekmes, I. A.
  • Kochetov, R.
Abstract

<p>The emergence of nano dielectrics for specialized high voltage applications sparked off a variety of research activities, which proved that nano-fillers are capable of improving the electrical, thermal and mechanical properties of polymers. This paper primarily investigates the effect of addition of hBN (hexagonal boron nitride) nanoparticles into an epoxy polymer base by increasing fill-grade, from 0.2 to 5 % by volume, from two different standpoints: (a) characterizing the electrical space charge (S.C.) accumulation threshold under DC electrical fields, and, (b) demonstrating the alterations in material properties of the modified polymeric materials, from the unfilled polymer. Objective (a) is experimentally investigated by the pulsed electro-acoustic (PEA) technique, well known for determining spatial charge distribution in dielectrics. Objective (b) is investigated by determining the ultrasonic velocity response of the modified composites and unfilled polymer. The obtained results suggest a relation between electrical threshold fields for S.C. accumulation fill-grades, as well as the fact that incorporating stiff filler materials into brittle polymer bases leads to a tougher composite (capable of withstanding greater breaking stress levels), but with reduced ductility.</p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • nitride
  • ultrasonic
  • Boron
  • ductility