People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hosier, Ian L.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2021Enhanced boron nitride/polyolefin blends for high voltage applicationscitations
- 2019High performance polymer blend systems for HVDC applicationscitations
- 2018Polymer blend systems for HVDC cable applicationscitations
- 2018Enhanced electrical and thermal rating materials for renewable power cable connectionscitations
- 2017The effects of water on the dielectric properties of aluminum based nanocompositescitations
- 2017On the effect of functionalizer chain length and water content in polyethylene/silica nanocomposites: Part II – Charge Transportcitations
- 2017On the effect of functionalizer chain length and water content in polyethylene/silica nanocompositescitations
- 2017The effects of water on the dielectric properties of silicon based nanocompositescitations
- 2015The effects of surface hydroxyl groups in polyethylene-silica nanocomposites
- 2014Dielectric studies of polystyrene-based, high-permittivity composite systemscitations
- 2014Effect of water absorption on dielectric properties of nano-silica/polyethylene compositescitations
- 2014Barium titanate and the dielectric response of polystyrene-based composites
- 2013On the dielectric response of silica-based polyethylene nanocompositescitations
- 2013On Nanosilica Surface Functionalization Using Different Aliphatic Chain Length Silane Coupling Agents
- 2013Absorption Current Behaviour of Polyethylene/Silica Nanocomposites
- 2013Permittivity mismatch and its influence on ramp breakdown performance
- 2010An investigation of the potential of ethylene vinyl acetate/polyethylene blends for use in recyclable high voltage cable insulation systems
- 2004Lamellar morphology of random metallocene propylene copolymers studied by atomic force microscopy
- 2003Formation of the alpha and gamma polymorphs in random metallocene-propylene copolymers. Effect of concentration and type of comonomer
- 2000A study of the morphologies and growth kinetics of three monodisperse n-alkanes: C122H246, C162H326 and C246H494
Places of action
Organizations | Location | People |
---|
article
On the effect of functionalizer chain length and water content in polyethylene/silica nanocomposites
Abstract
A series of nanoparticles was prepared by functionalizing a commercial nanosilica with alkylsilanes of varying alkyl tail length, from propyl to octadecyl. By using a constant molar concentration of silane, the density of alkyl groups attached to each system should be comparable. The effect of chain length on the structure of the resulting nanosilica/polyethylene nanocomposites was examined and comparison with an unfilled reference system revealed that, other than through a weak nucleating effect, the inclusion of the nanosilica does not affect the matrix structure. Since water interacts strongly with applied electric fields, water was used as a dielectric probe in conjunction with dielectric spectroscopy to examine the effect of the nanofiller and its surface chemistry on the system. Sets of samples were prepared through equilibrating under ambient conditions, vacuum drying and water immersion. While the water content of the unfilled polymer was not greatly affected, the water content of the nanocomposites varied over a wide range as a result of water accumulation, in a range of states, at nanoparticle interfaces. The effect of water content on breakdown behavior was also explored and, in the unfilled polymer, the breakdown strength was found to depend little on exposure to water (~13% reduction). In all the nanocomposites, the increased propensity for these systems to absorb water meant that the breakdown strength was dramatically affected (>66% reduction).