People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salek, Milan
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023High-Q 100 ghz photonic crystal resonator fabricated from a cyclic olefin copolymercitations
- 2023Compact Monolithic 3D-Printed Wideband Filters Using Pole-Generating Resonant Irisescitations
- 2023Evaluation of 3D printed monolithic G-band waveguide componentscitations
- 2022A 3D printed 300 GHz waveguide cavity filter by micro laser sinteringcitations
- 2022Compact monolithic SLM 3D-printed filters using pole-generating resonant irisescitations
- 2021Two‐GHz hybrid coaxial bandpass filter fabricated by stereolithography 3‐D printing
- 2020180 GHz Waveguide Bandpass Filter Fabricated by 3D Printing Technologycitations
- 201990 GHz Micro Laser Sintered Filter: Reproducibility and Quality Assessmentcitations
- 20193-D Printed microwave and terahertz passive components
- 2018W-Band Waveguide Bandpass Filters Fabricated by Micro Laser Sinteringcitations
Places of action
Organizations | Location | People |
---|
article
W-Band Waveguide Bandpass Filters Fabricated by Micro Laser Sintering
Abstract
<p>This paper presents a fifth-order W-band waveguide bandpass filter with a Chebyshev response, operating at center frequency of 90 GHz and having fractional bandwidth of 11%. The filter is fabricated by micro laser sintering process which is a powder bed based additive manufacturing technology. Use of this technology allows the filter to be made accurately with high resolution and good surface quality in one piece. This results in better performance in term of insertion loss and reproducibility. For the purpose of comparison, two similar filters are presented in this paper with the same structure and specification, one made from stainless steel and the other made from stainless steel coated with copper. Both filters are tested and have excellent agreement between measurements and simulations.</p>