People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skaik, Talal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024CNC-Machined and 3D-Printed Metal G-band Diplexers for Earth Observation Applicationscitations
- 2023A monolithically printed filtering waveguide aperture antennacitations
- 2023Lightweight, High-Q and High Temperature Stability Microwave Cavity Resonators Using Carbon-Fiber Reinforced Silicon-Carbide Ceramic Compositecitations
- 2023Compact Self-Supportive Filters Suitable for Additive Manufacturingcitations
- 2023Compact Monolithic 3D-Printed Wideband Filters Using Pole-Generating Resonant Irisescitations
- 2023Evaluation of 3D printed monolithic G-band waveguide componentscitations
- 2022A 3D printed 300 GHz waveguide cavity filter by micro laser sinteringcitations
- 2022D-band waveguide diplexer fabricated using micro laser sinteringcitations
- 2022A Narrowband 3-D Printed Invar Spherical Dual-Mode Filter With High Thermal Stability for OMUXscitations
- 2022Thermal stability analysis of 3D printed resonators using novel materialscitations
- 2021125 GHz frequency doubler using a waveguide cavity produced by stereolithographycitations
- 2020180 GHz Waveguide Bandpass Filter Fabricated by 3D Printing Technologycitations
Places of action
Organizations | Location | People |
---|
article
CNC-Machined and 3D-Printed Metal G-band Diplexers for Earth Observation Applications
Abstract
<p>This work presents two manufacturing approaches for waveguide diplexers applicable to separating two of the G-band, 140-220 GHz, channels used in space borne radiometry of the Earth&#x2019;s atmosphere. Waveguide diplexing is a lower volume alternative to a quasi-optical, i.e., frequency selective surface based, system. The two channels considered are 164-167 GHz and 175-191 GHz. The diplexer comprises a Y junction with two waveguide-cavity filters. Two high-precision fabrication technologies have been utilized: computer numerical control (CNC) machining and 3D printing. Two units were CNC machined as brass split-blocks and a third was 3D printed monolithically in stainless steel by a micro laser sintering process. The latter is an innovative structure that incorporates the diplexer with the waveguide flanges. All devices were gold coated to reduce loss. Measured insertion losses in the two channels were 0.6 and 0.34 dB for the CNC-machined diplexers and 1.8 and 0.8 dB for the 3D printed diplexer. The maximum frequency shifts from design were 0.695 GHz in the CNC-diplexers and 1.55 GHz in the 3D printed diplexer.</p>