People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Komolafe, Abiodun
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Vacuum thermoforming for packaging flexible electronics and sensors in e-textilescitations
- 2023A Novel Screen-Printed Textile Interface for High-Density Electromyography Recordingcitations
- 2023A wearable all printed textile based 6.78 MHz 15 W output wireless power transfer system and it's screen printed joule heater applicationcitations
- 2020Influence of textile structure on the wearability of printed e-textiles
- 2020Influence of textile structure on the wearability of printed e-textiles
- 2020Reliable UHF long-range textile-integrated RFID tag based on a compact flexible antenna filamentcitations
- 2020Dataset for: Influence of textile structure on the wearability of printed e-textiles
- 2017Flexible piezoelectric nano-composite films for kinetic energy harvesting from textilescitations
- 2017Flexible piezoelectric nano-composite films for kinetic energy harvesting from textilescitations
Places of action
Organizations | Location | People |
---|
article
Vacuum thermoforming for packaging flexible electronics and sensors in e-textiles
Abstract
Packaging of flexible electronics is essential for e-textile applications to reduce degradation of performance caused by mechanical stress and environmental effects and to increase durability. Conformal coatings for packaging have the advantage of reducing rigidity and can be seamlessly integrated into fabrics. Vacuum forming is a technique for packaging electronic devices with thermoplastic films of various thicknesses providing uniform coating. Polyurethane is a widely used thermoplastic material in e-textile and can be easily processed by vacuum forming for packaging. In this article, a detailed explanation of the working of Formech 450DT vacuum former is discussed for packaging small electronic chip for e-textile application with thermoplastic polyurethane (TPU). Two types of flexible circuits were packaged: a carbon monoxide (CO) gas sensor and a series of resistors on flexible PCB. The packaged CO flexible sensor and series resistors endured 5.3 times and 1.7 times, respectively, more bending cycles than unpackaged flexible electronic filament samples. For the washing cycles, the packaged flexible strips with CO sensor and series resistors endured 1.5 times.