Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Robutel, Rémi

  • Google
  • 1
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Sintered-Silver Bonding of High-Temperature Piezoelectric Ceramic Sensors4citations

Places of action

Chart of shared publication
Hascoët, Stanislas
1 / 1 shared
Billore, Justine
1 / 1 shared
Buttay, Cyril
1 / 19 shared
Li, Jianfeng
1 / 6 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Hascoët, Stanislas
  • Billore, Justine
  • Buttay, Cyril
  • Li, Jianfeng
OrganizationsLocationPeople

article

Sintered-Silver Bonding of High-Temperature Piezoelectric Ceramic Sensors

  • Hascoët, Stanislas
  • Billore, Justine
  • Robutel, Rémi
  • Buttay, Cyril
  • Li, Jianfeng
Abstract

Silver sintering is used to bond five components together, in order to form a piezoelectric sensor. A description is provided of the preparation of these components, and of the manufacturing steps, which are carried out at a low temperature (280 °C). The resulting sensor assemblies are then characterized: cross-sectional views show that the silver layer has a very dense structure , with less than 1 % porosity, although further focused-ion beam investigations show that this porosity is closer to 15 %. The shear strength is approximately 30 MPa. The Young's modulus of the silver bondline is measured using nanoindentation, and is found to be comparable with that of bulk silver (56.6 GPa). Finally, a silver-sintered sensor is compared with a sensor bonded using conventional techniques, showing that an improvement in sensitivity by a factor of more than 3 is achieved.

Topics
  • impedance spectroscopy
  • silver
  • laser emission spectroscopy
  • strength
  • nanoindentation
  • porosity
  • ceramic
  • sintering