Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sugden, Mark W.

  • Google
  • 1
  • 4
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Electronics Assembly and High Temperature Reliability Using Sn-3.8Ag-0.7Cu Solder Paste With Zn Additives8citations

Places of action

Chart of shared publication
Kotadia, Hiren R.
1 / 8 shared
Steen, Hector
1 / 1 shared
Green, Mark
1 / 15 shared
Mannan, Samjid Hassan
1 / 29 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Kotadia, Hiren R.
  • Steen, Hector
  • Green, Mark
  • Mannan, Samjid Hassan
OrganizationsLocationPeople

article

Electronics Assembly and High Temperature Reliability Using Sn-3.8Ag-0.7Cu Solder Paste With Zn Additives

  • Sugden, Mark W.
  • Kotadia, Hiren R.
  • Steen, Hector
  • Green, Mark
  • Mannan, Samjid Hassan
Abstract

<p>In this paper, we report a comparison of interfacial reactions of Sn-3.8Ag-0.7Cu (SAC 387) and SAC (0-1.5 Zn) solder pastes on Cu (organic solderability preservative finish) and Au/Ni-P/Cu [electroless Ni immersion gold (ENIG)] substrate metallizations with Ni/Sn and Cu/Sn plated component leads. Zn added to the paste in the form of surface-coated micrometer-sized particles dissolves into the solder during reflow. High-temperature aging (150 degrees C and 185 degrees C), thermal cycling experiments (-20 degrees C to 175 degrees C for FR4 substrate, -40 degrees C to 185 degrees C for ENIG polyimide substrate), and shear testing of the solder joints were carried out. At a Cu interface, adding Zn to the solder joint improves the shear strength and suppresses Cu3Sn and overall interfacial intermetallic compound (IMC) and Kirkendall void formation &lt;175 degrees C. However, above this temperature, the presence of Zn accelerates IMC growth. At a Ni interface, IMC suppression with Zn was noted at all temperatures. The amount of IMC suppression depends on the Zn concentration in the IMCs, which in turn depends on the geometry of joint as well as the original concentration of Zn in the solder.</p>

Topics
  • surface
  • compound
  • experiment
  • gold
  • strength
  • aging
  • void
  • intermetallic
  • aging