Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mannan, Samjid Hassan

  • Google
  • 29
  • 65
  • 1293

King's College London

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (29/29 displayed)

  • 2020High bond strength Cu joints fabricated by rapid and pressureless in situ reduction-sintering of Cu nanoparticles35citations
  • 2019Influence of Zn concentration on interfacial intermetallics during liquid and solid state reaction of hypo and hypereutectic Sn-Zn solder alloys3citations
  • 2019Arresting High-Temperature Microstructural Evolution inside Sintered Silver3citations
  • 2017Review of silver nanoparticle based die attach materials for high power/temperature applications197citations
  • 2016Microstructural evolution of sintered silver at elevated temperatures29citations
  • 2016Reactions in electrodeposited Cu/Sn and Cu/Ni/Sn nanoscale multilayers for interconnects29citations
  • 2016Thermally stable high temperature die attach solution25citations
  • 2015Electromigration Phenomena in Sintered Nanoparticle Ag Systems Under High Current Densitycitations
  • 2015Factors influencing microstructural evolution in nanoparticle sintered Ag die attach3citations
  • 2014A review: On the development of low melting temperature Pb-free solders402citations
  • 2013Electronics Assembly and High Temperature Reliability Using Sn-3.8Ag-0.7Cu Solder Paste With Zn Additives8citations
  • 2012Disabling of Nanoparticle Effects at Increased Temperature in Nanocomposite Solders22citations
  • 2012Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction19citations
  • 2012Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni-P substrates108citations
  • 2010Reactions of Sn-3.5Ag-Based Solders Containing Zn and Al Additions on Cu and Ni(P) Substrates 50citations
  • 2009Cross-Section Preparation for Solder Joints and MEMS Device Using Argon Ion Beam Milling19citations
  • 2008Interfacial reaction between molten Sn-Bi based solders and electroless Ni-P coatings for liquid solder interconnects6citations
  • 2007Dissolution and interfacial reaction of Nb in contact with the molten 521n-48Sn solder15citations
  • 2007Failure mechanisms of dummy IGBT assembles constructed using liquid In-Sn/Nb systemcitations
  • 2006Interfacial reactions between molten Sn-Bi-X solders and Cu substrates for liquid solder interconnects199citations
  • 2006Lifetime of solid metals in contact with liquid solders for high-temperature liquid solder assemblies8citations
  • 2006Edge effects in intermetallic compound crystal growth between Nb and molten 52In-48Sn soldercitations
  • 2005Study of intermetallic crystal growth between Nb and molten 52In-48Sn solder12citations
  • 2004Materials and processes for implementing high-temperature liquid interconnects54citations
  • 2004Dissolution of solids in contact with liquid solder16citations
  • 2002Electroless nickel bumping of aluminum bondpads - Part II: Electroless nickel plating23citations
  • 2000Solder paste reflow modeling for flip chip assemblycitations
  • 2000Investigation of a solder bumping technique for flip-chip interconnectioncitations
  • 2000Under bump metallisation of fine pitch flip-chip using electroless nickel deposition8citations

Places of action

Chart of shared publication
Zuo, Yang
1 / 1 shared
Carter-Searjeant, Sadie
1 / 1 shared
Green, Mark
5 / 15 shared
Mills, Liam
1 / 2 shared
Kotadia, Hiren R.
4 / 8 shared
Das, Amit
1 / 18 shared
Sano, Naoko
1 / 1 shared
Khtatba, Khalid Mohd Abdalla
2 / 2 shared
Qutaish, Hamzeh
1 / 1 shared
Paknejad, Seyed Amir
6 / 7 shared
Zoubi, Tariq
1 / 1 shared
Parijs, Linde Van
1 / 1 shared
Greenberg, Julian
1 / 2 shared
Mansourian, Ali
4 / 5 shared
Khtatba, Khalid
2 / 3 shared
Chia, Pay Ying
1 / 1 shared
Haseeb, A. S. M. A.
1 / 7 shared
Noh, Yohan
1 / 2 shared
Qiannan, Wen
1 / 1 shared
Zayats, Anatoly V.
1 / 18 shared
Parijs, L. Van
1 / 1 shared
Khtatba, K.
1 / 1 shared
Noh, Y.
1 / 1 shared
Howes, Philip D.
1 / 1 shared
Sugden, Mark W.
1 / 1 shared
Steen, Hector
1 / 1 shared
Ashayer, Roya
1 / 1 shared
Roshanghias, Ali
1 / 5 shared
Kokabi, Amir H.
1 / 1 shared
Khomamizadeh, Farzad
1 / 2 shared
Clode, Michael P.
1 / 1 shared
Miodownik, Mark
1 / 2 shared
Mokhtari, Omid
1 / 1 shared
Mokhtari, O.
3 / 6 shared
Kotadia, H. R.
3 / 6 shared
Clode, M. P.
9 / 9 shared
Bottrill, M.
1 / 1 shared
Clode, Michael Paul
1 / 1 shared
Amirmajdi, Omid Mokhtari
1 / 1 shared
Ashyer-Soltani, Roya
1 / 1 shared
Wang, Yunqi
1 / 1 shared
Cabruja, Enric
1 / 1 shared
Pellegrini, Giulio
1 / 2 shared
Hutt, David A.
1 / 2 shared
Whalley, David C.
1 / 1 shared
Liu, Chongqing
1 / 1 shared
Conway, Paul P.
1 / 3 shared
Chen, Keming
1 / 1 shared
Clode, Mike P.
1 / 1 shared
Li, Jianfeng
1 / 6 shared
Crossley, A.
1 / 15 shared
Johnston, C.
1 / 16 shared
Li, J. F.
5 / 5 shared
Hute, D. A.
1 / 1 shared
Whalley, D. C.
6 / 13 shared
Clodel, M. P.
1 / 1 shared
Sarvar, F.
1 / 1 shared
Hutt, D. A.
4 / 6 shared
Dagher, M.
1 / 1 shared
Conway, P. P.
4 / 6 shared
Liu, C. Q.
1 / 1 shared
Bailey, C.
1 / 5 shared
Rhodes, D. G.
1 / 1 shared
Holmes, A. S.
1 / 2 shared
Liu, C.
1 / 47 shared
Chart of publication period
2020
2019
2017
2016
2015
2014
2013
2012
2010
2009
2008
2007
2006
2005
2004
2002
2000

Co-Authors (by relevance)

  • Zuo, Yang
  • Carter-Searjeant, Sadie
  • Green, Mark
  • Mills, Liam
  • Kotadia, Hiren R.
  • Das, Amit
  • Sano, Naoko
  • Khtatba, Khalid Mohd Abdalla
  • Qutaish, Hamzeh
  • Paknejad, Seyed Amir
  • Zoubi, Tariq
  • Parijs, Linde Van
  • Greenberg, Julian
  • Mansourian, Ali
  • Khtatba, Khalid
  • Chia, Pay Ying
  • Haseeb, A. S. M. A.
  • Noh, Yohan
  • Qiannan, Wen
  • Zayats, Anatoly V.
  • Parijs, L. Van
  • Khtatba, K.
  • Noh, Y.
  • Howes, Philip D.
  • Sugden, Mark W.
  • Steen, Hector
  • Ashayer, Roya
  • Roshanghias, Ali
  • Kokabi, Amir H.
  • Khomamizadeh, Farzad
  • Clode, Michael P.
  • Miodownik, Mark
  • Mokhtari, Omid
  • Mokhtari, O.
  • Kotadia, H. R.
  • Clode, M. P.
  • Bottrill, M.
  • Clode, Michael Paul
  • Amirmajdi, Omid Mokhtari
  • Ashyer-Soltani, Roya
  • Wang, Yunqi
  • Cabruja, Enric
  • Pellegrini, Giulio
  • Hutt, David A.
  • Whalley, David C.
  • Liu, Chongqing
  • Conway, Paul P.
  • Chen, Keming
  • Clode, Mike P.
  • Li, Jianfeng
  • Crossley, A.
  • Johnston, C.
  • Li, J. F.
  • Hute, D. A.
  • Whalley, D. C.
  • Clodel, M. P.
  • Sarvar, F.
  • Hutt, D. A.
  • Dagher, M.
  • Conway, P. P.
  • Liu, C. Q.
  • Bailey, C.
  • Rhodes, D. G.
  • Holmes, A. S.
  • Liu, C.
OrganizationsLocationPeople

article

Electronics Assembly and High Temperature Reliability Using Sn-3.8Ag-0.7Cu Solder Paste With Zn Additives

  • Sugden, Mark W.
  • Kotadia, Hiren R.
  • Steen, Hector
  • Green, Mark
  • Mannan, Samjid Hassan
Abstract

<p>In this paper, we report a comparison of interfacial reactions of Sn-3.8Ag-0.7Cu (SAC 387) and SAC (0-1.5 Zn) solder pastes on Cu (organic solderability preservative finish) and Au/Ni-P/Cu [electroless Ni immersion gold (ENIG)] substrate metallizations with Ni/Sn and Cu/Sn plated component leads. Zn added to the paste in the form of surface-coated micrometer-sized particles dissolves into the solder during reflow. High-temperature aging (150 degrees C and 185 degrees C), thermal cycling experiments (-20 degrees C to 175 degrees C for FR4 substrate, -40 degrees C to 185 degrees C for ENIG polyimide substrate), and shear testing of the solder joints were carried out. At a Cu interface, adding Zn to the solder joint improves the shear strength and suppresses Cu3Sn and overall interfacial intermetallic compound (IMC) and Kirkendall void formation &lt;175 degrees C. However, above this temperature, the presence of Zn accelerates IMC growth. At a Ni interface, IMC suppression with Zn was noted at all temperatures. The amount of IMC suppression depends on the Zn concentration in the IMCs, which in turn depends on the geometry of joint as well as the original concentration of Zn in the solder.</p>

Topics
  • surface
  • compound
  • experiment
  • gold
  • strength
  • aging
  • void
  • intermetallic
  • aging