People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khuri-Yakub, Butrus T.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2013Integrated Circuits for Volumetric Ultrasound Imaging With 2-D CMUT Arrayscitations
- 2013A Comparison Between Conventional and Collapse-Mode Capacitive Micromachined Ultrasonic Transducers in 10-MHz 1-D Arrayscitations
- 2012Volumetric Real-Time Imaging Using a CMUT Ring Arraycitations
- 2012Deep Tissue Photoacoustic Imaging Using a Miniaturized 2-D Capacitive Micromachined Ultrasonic Transducer Arraycitations
- 2011Chemical Vapor Detection Using a Capacitive Micromachined Ultrasonic Transducercitations
- 20103-D Deep Penetration Photoacoustic Imaging with a 2-D CMUT Array.
- 2009Three-Dimensional Photoacoustic Imaging Using a Two-Dimensional CMUT Arraycitations
- 2009An Integrated Circuit With Transmit Beamforming Flip-Chip Bonded to a 2-D CMUT Array for 3-D Ultrasound Imagingcitations
- 2009Wafer-Bonded 2-D CMUT Arrays Incorporating Through-Wafer Trench-Isolated Interconnects with a Supporting Framecitations
- 2008Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imagingcitations
- 2007Integration of trench-isolated through-wafer interconnects with 2d capacitive micromachined ultrasonic transducer arrayscitations
- 2007Finite element modeling and experimental characterization of crosstalk in 1-D CMUT arrayscitations
- 20063-D ultrasound imaging using a forward-looking CMUT ring array for intravascular/intracardiac applications
Places of action
Organizations | Location | People |
---|
document
Integrated Circuits for Volumetric Ultrasound Imaging With 2-D CMUT Arrays
Abstract
Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μ m. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.