Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shen, Zejun

  • Google
  • 1
  • 3
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Computation of the field in an axial gap, trapped-flux type superconducting electric machine7citations

Places of action

Chart of shared publication
Cardwell, David A.
1 / 10 shared
Campbell, Archie M.
1 / 1 shared
Ainslie, Md
1 / 13 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Cardwell, David A.
  • Campbell, Archie M.
  • Ainslie, Md
OrganizationsLocationPeople

article

Computation of the field in an axial gap, trapped-flux type superconducting electric machine

  • Cardwell, David A.
  • Shen, Zejun
  • Campbell, Archie M.
  • Ainslie, Md
Abstract

<p>The Bulk Superconductivity Group at the University of Cambridge is currently investigating the use of high temperature superconductors in wire and bulk form to increase the electrical and magnetic loading of an axial gap, trapped flux-type superconducting electric machine. The use of superconducting materials in electric machines can lead to increases in efficiency, as well as power density, which results in reductions in both the size and weight of the machine. In this paper, the authors present a method to compute the field in such an electric machine generated by an array of fully magnetized bulk superconductors. Analytical expressions are derived for the field that would exist in the coil region of the motor, which will act as a powerful tool for carrying out parametric analysis of the motor's design and performance.</p>

Topics
  • density
  • impedance spectroscopy
  • wire
  • superconductivity
  • superconductivity