People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohammed, Beadaa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Tapered graded index lens antenna with enhanced penetration for near-field torso imagingcitations
- 2021Hepatic steatosis detection using differential effective permittivitycitations
- 2020Wearable electromagnetic belt for steatotic liver detection using multivariate energy statisticscitations
- 2020Implantable sensor for detecting changes in the loss tangent of cerebrospinal fluidcitations
- 2019Compact implantable antennas for the cerebrospinal fluid monitoringcitations
- 2019Compact unidirectional conformal antenna based on flexible high permittivity custom-made substrate for wearable wideband electromagnetic head imaging systemcitations
- 2018Fabrication and characterization of flexible polymer iron oxide composite substrate for the imaging antennas of wearable head imaging systemscitations
- 2017Closed-form equation to estimate the dielectric properties of biological tissues as a function of agecitations
- 2017Skin tissue characterization of canine at microwave and millimeter-wave frequencies
Places of action
Organizations | Location | People |
---|
article
Compact implantable antennas for the cerebrospinal fluid monitoring
Abstract
The changes in dielectric properties of cerebrospinal fluid (CSF) can be utilized in diagnosis of cognitive diseases. The aim of this paper is to investigate the employability of an implantable antenna to concurrently operate as a radiator and sensor of the dielectric properties of CSF. The antennas exploit narrow slits and gaps as capacitors for sensing the permittivity of CSF. Three antennas are designed based on capacitively loaded loop, split ring resonator loop and interdigital capacitor loaded loop. To investigate if the dielectric properties of CSF are a function of age, in-vitro measurements of different CSF from pigs with different ages are measured in the sub-1GHz band (0:1- 1 GHz). The results reveal strong pairwise correlation exceeding 0.77 for permittivity and 0.83 for conductivity among samples. Hence, the dielectric properties of the CSF do not reflect agedependence and sensing sensitivity is implicitly not affected by age. Finally, the implantable antennas are fabricated and tested in a realistic environment viz. inside a piglet’s head and CSF simulants. The shift in resonance frequency when the permittivity is increased by 14% at 400 MHz ranges between 31 to 40 MHz with a relative resonance sensitivity between 6 – 8% for the proposed implantable antennas.