People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hashim, Uda
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Dielectric Properties and Microwave Absorbing Properties of Silicon Carbide Nanoparticles and Silicon Carbide Nanowhiskers
- 2023Formation of polypropylene nanocomposite joint using silicon carbide nanowhiskers as novel susceptor for microwave weldingcitations
- 2019Fabrication of gold nanorod–zinc oxide nanocomposite on gap-fingered integrated interdigitated aluminum electrodes and their response to electrolytescitations
- 2017Synthesis of silicon carbide nanowhiskers by microwave heating: effect of heating durationcitations
- 2017Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin I detectioncitations
- 2016Novel synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotubes: The effect of the heating temperaturecitations
- 2016Interdigitated Electrodes integrated with zinc oxide nanoparticles for Cardiac Troponin I biomarker detectioncitations
- 2015Ab initio method of optical investigations of CdS1−xTex alloys under quantum dots diameter effectcitations
- 2015Real-time detection by properties of tin dioxide for formaldehyde gas sensorcitations
- 2015Structural, optical and electrical properties of Cu2Zn1źxCdxSnS4 quinternary alloys nanostructures deposited on porous siliconcitations
- 2015Deposition and characterization of ZnO thin film for FET with back gate biasing-based biosensors applicationcitations
- 2014Glass etching for cost-effective microchannels fabricationcitations
- 2014Selective growth of ZnO nanorods on microgap electrodes and their applications in UV sensors
- 2012Sol-gel Synthesis of TiO 2 Thin Films from In-house Nano-TiO 2 Powder
- 2008Silicon nitride gate ISFET fabrication based on four mask layers using standard MOSFET technologycitations
Places of action
Organizations | Location | People |
---|
document
Interdigitated Electrodes integrated with zinc oxide nanoparticles for Cardiac Troponin I biomarker detection
Abstract
In this paper, an interdigitated electrodes (IDEs) biosensor integrated with zinc oxide (ZnO) nanoparticles thin film as transducer is presented, which is capable of converting the biological interaction into electrical signal of cardiac troponin I (cTnI), a gold standard biomarker for Acute Myocardial Infarction (AMI). Conventional photolithography methods are applied to fabricate the device on a silicon wafer. The surface ZnO nanoparticles thin film is functionalized with bi-linkers and cTnI monoclonal antibodies via covalent binding for capturing the cTnI target biomarkers. The fabricated biosensor is electrically characterized by using Keithley 6487 picoammeter. The changes in the current flow are compared between before and after cTnI biomarkers binding at different concentrations. The biosensor had successfully demonstrated detection of cTnI biomarker in the concentration range of 1 ng/ml to 10 µg/mL. The achieved sensitivity and detection limit of 15.806 nA•(g/mL)−1 and 2.191 ng/mL, respectively, show that biosensor has great properties for detection of cTnI.