People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hashim, Uda
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Dielectric Properties and Microwave Absorbing Properties of Silicon Carbide Nanoparticles and Silicon Carbide Nanowhiskers
- 2023Formation of polypropylene nanocomposite joint using silicon carbide nanowhiskers as novel susceptor for microwave weldingcitations
- 2019Fabrication of gold nanorod–zinc oxide nanocomposite on gap-fingered integrated interdigitated aluminum electrodes and their response to electrolytescitations
- 2017Synthesis of silicon carbide nanowhiskers by microwave heating: effect of heating durationcitations
- 2017Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin I detectioncitations
- 2016Novel synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotubes: The effect of the heating temperaturecitations
- 2016Interdigitated Electrodes integrated with zinc oxide nanoparticles for Cardiac Troponin I biomarker detectioncitations
- 2015Ab initio method of optical investigations of CdS1−xTex alloys under quantum dots diameter effectcitations
- 2015Real-time detection by properties of tin dioxide for formaldehyde gas sensorcitations
- 2015Structural, optical and electrical properties of Cu2Zn1źxCdxSnS4 quinternary alloys nanostructures deposited on porous siliconcitations
- 2015Deposition and characterization of ZnO thin film for FET with back gate biasing-based biosensors applicationcitations
- 2014Glass etching for cost-effective microchannels fabricationcitations
- 2014Selective growth of ZnO nanorods on microgap electrodes and their applications in UV sensors
- 2012Sol-gel Synthesis of TiO 2 Thin Films from In-house Nano-TiO 2 Powder
- 2008Silicon nitride gate ISFET fabrication based on four mask layers using standard MOSFET technologycitations
Places of action
Organizations | Location | People |
---|
document
Silicon nitride gate ISFET fabrication based on four mask layers using standard MOSFET technology
Abstract
In this work, we present a simple fabrication method of ion sensitive field effect transistor (ISFET) using cost effective equipments in a cleanroom laboratory environment. The ISFET has a structure similar to that of a metal oxide semiconductor field effect transistor (MOSFET) except without the metal layer on top of the gate oxide and uses silicon nitride insulating layer as the ion sensing material. A conventional metal gate MOSFET technology is used to fabricate the ISFET where no extra mask or post processing step is required. This process only requires four mask layers and uses buffered hydrofluoric acid (BHF) for the etching of silicon nitride and silicon dioxide to form contact holes before metallization process. The result of this work is a simple ISFET structure with silicon nitride and silicon dioxide as the gate material.