People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tas, Niels Roelof
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2016Ultra-thin nanochannel-based liquid TEM cell for EELS analysis and high resolution imaging
- 2013Fabrication of 3D fractal structures using nanoscale anisotropic etching of single crystalline siliconcitations
- 2010Combining retraction edge lithography and plasma etching for arbitrary contour nanoridge fabricationcitations
- 2008Fabrication of a silicon oxide stamp by edge lithography reinforced with silicon nitride for nanoimprint lithographycitations
- 2008Monolithics silicon nano-ridge fabrication by edge lithography and wet anisotropic etching of silicon
- 2007Simple technique for direct patterning of nanowires using a nanoslit shadow-maskcitations
- 2005Multifunctional tool for expanding afm-based applicationscitations
- 20041-D nanochannels fabricated in polyimidecitations
- 2003Wet anisotropic etching for fluidic 1d nanochannelscitations
- 2002Wet anisotropic etching for fluidic 1D nanochannels
- 2001Failure mechanisms of pressurized microchannels, model, and experimentscitations
- 2000Failure mechanisms of pressurized microchannels, model and experiments
Places of action
Organizations | Location | People |
---|
document
Simple technique for direct patterning of nanowires using a nanoslit shadow-mask
Abstract
Nanowires of vaious lengths and widths have been fabricated using a wafer-scale shadow mask with deposition windows, or nanoslits, created with focused ion beam machining. Metallic nanowires with widths down to 50 nm and lengths up to 100 micrometers have been realized. Measurements of electrical I-V characteristics show linear behavior of nanowires with widths and thickness each around 50 nm