People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hashim, Uda
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Dielectric Properties and Microwave Absorbing Properties of Silicon Carbide Nanoparticles and Silicon Carbide Nanowhiskers
- 2023Formation of polypropylene nanocomposite joint using silicon carbide nanowhiskers as novel susceptor for microwave weldingcitations
- 2019Fabrication of gold nanorod–zinc oxide nanocomposite on gap-fingered integrated interdigitated aluminum electrodes and their response to electrolytescitations
- 2017Synthesis of silicon carbide nanowhiskers by microwave heating: effect of heating durationcitations
- 2017Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin I detectioncitations
- 2016Novel synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotubes: The effect of the heating temperaturecitations
- 2016Interdigitated Electrodes integrated with zinc oxide nanoparticles for Cardiac Troponin I biomarker detectioncitations
- 2015Ab initio method of optical investigations of CdS1−xTex alloys under quantum dots diameter effectcitations
- 2015Real-time detection by properties of tin dioxide for formaldehyde gas sensorcitations
- 2015Structural, optical and electrical properties of Cu2Zn1źxCdxSnS4 quinternary alloys nanostructures deposited on porous siliconcitations
- 2015Deposition and characterization of ZnO thin film for FET with back gate biasing-based biosensors applicationcitations
- 2014Glass etching for cost-effective microchannels fabricationcitations
- 2014Selective growth of ZnO nanorods on microgap electrodes and their applications in UV sensors
- 2012Sol-gel Synthesis of TiO 2 Thin Films from In-house Nano-TiO 2 Powder
- 2008Silicon nitride gate ISFET fabrication based on four mask layers using standard MOSFET technologycitations
Places of action
Organizations | Location | People |
---|
document
Deposition and characterization of ZnO thin film for FET with back gate biasing-based biosensors application
Abstract
This paper presents the preparation and characterization of zinc oxide (ZnO) thin film prior deposition on the channel of field-effect transistor with back gate biasing (FET-BG) for biosensing application. Sol-Gel technique is a chosen method for the preparation of the ZnO seed solution, followed by the deposition process through spin coating technique on the silicon dioxide (SiO2). Prior to that, the SiO2 layer is grown on a silicon die. The ZnO seed solution is deposited at various numbers of coating layer (1, 3, and 5 coating layers), baked, and annealed prior to characterization of its surface morphological, structural, crystalline phase, and electrical characterization. The results obtained give a significant evidences for the future deposition process of the ZnO thin films as the FET-BG biosensor device on the silicon-on-insulator (SOI) wafer.