People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Uesugi, Katsuhiro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Effect of [6,6]-Phenyl-C 61 butyric acid methyl ester (PCBM) agglomerated nanostructure on device performance in organic thin-film transistors
Abstract
The influence of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) agglomerated nanostructure on device performance of pentacene-based organic thin-film transistors (OTFTs) were reported. The presence of PCBM layers on a SiO2 gate dielectric resulted in a good electrical characteristics of pentacene-based OTFTs, including a relatively high mobility (μ = 0.95-2.2 cm2 V-1 s-1), low threshold voltages (Vth = -1.1 - -5.4 V), a high on/off current ratio (Ion/Ioff = 104), and a high value of subthreshold slope (SS = 6.5 V/decade). The surface topography studies reveal that the PCBM nanostructure could favor the reduction of grain boundaries, which resulted in a better transistor performance of pentacene-based OTFTs. The influence of PCBM on the molecular microstructure of pentacene thin films elucidates a reasonable explanation for higher performance on OTFTs.