Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stramigioli, Stefano

  • Google
  • 3
  • 9
  • 7

University of Twente

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Model Code of Anisotropic Electrical Conduction in Layered 3D-Prints with Fused Deposition Modelingcitations
  • 20203D-Printing of a Lemon Battery via Fused Deposition Modelling and Electrodeposition3citations
  • 2009Compact analysis of 3D bipedal gait using geometric dynamics of simplified models4citations

Places of action

Chart of shared publication
Dijkshoorn, Alexander
2 / 2 shared
Krijnen, Gijs J. M.
2 / 14 shared
Schouten, Martijn
1 / 1 shared
Olthuis, Wouter
1 / 6 shared
Sanders, Remco G. P.
1 / 1 shared
Šćulac, Luka
1 / 1 shared
Goswami, Asok
1 / 1 shared
Oort, Gijs Van
1 / 1 shared
Duindam, V.
1 / 1 shared
Chart of publication period
2021
2020
2009

Co-Authors (by relevance)

  • Dijkshoorn, Alexander
  • Krijnen, Gijs J. M.
  • Schouten, Martijn
  • Olthuis, Wouter
  • Sanders, Remco G. P.
  • Šćulac, Luka
  • Goswami, Asok
  • Oort, Gijs Van
  • Duindam, V.
OrganizationsLocationPeople

document

Compact analysis of 3D bipedal gait using geometric dynamics of simplified models

  • Goswami, Asok
  • Oort, Gijs Van
  • Duindam, V.
  • Stramigioli, Stefano
Abstract

The large number of degrees of freedom in legged robots give rise to complicated dynamics equations. Analyzing these equations or using them for control can therefore be a difficult and non-intuitive task. A simplification of the complex multi-body dynamics can be achieved by instantaneously re- ducing it to an equivalent single inertial entity called the locked inertia or the composite rigid body inertia. In this paper, we adopt the methods of geometric dynamics to analyze the gait using the locked inertia of the robot. The analysis includes the rolling of a biped on a 3D rigid foot and 3D impacts. An example of numerical optimization of foot shape parameters is shown. Our long-term objective is to develop the theoretical frame- work and to provide the necessary tools for systematic analysis, design, and control of efficient biped robots.

Topics
  • impedance spectroscopy
  • composite