People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alvarez-Montoya, Joham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021Toward Structural Health Monitoring of Civil Structures Based on Self-Sensing Concrete Nanocompositescitations
- 2020In-flight and wireless damage detection in a UAV composite wing using fiber optic sensors and strain field pattern recognitioncitations
- 2019Artificial Intelligence Metamodeling Approach to Design Smart Composite Laminates with Bend-Twist Couplingcitations
- 2019Synthesis and characterization of cement/carbon-nanotube composite for structural health monitoring applicationscitations
- 2018Structural health monitoring using carbon nanotube/epoxy composites and strain-field pattern recognition
- 2018Damage detection in composite aerostructures from strain and telemetry data fusion by means of pattern recognition techniques
- 2017Structural health monitoring on an unmanned aerial vehicle wing's beam based on fiber Bragg gratings and pattern recognition techniquescitations
Places of action
Organizations | Location | People |
---|
document
Artificial Intelligence Metamodeling Approach to Design Smart Composite Laminates with Bend-Twist Coupling
Abstract
<p>The bend-twist coupling effect of anisotropic materials such as composite laminates can be used to create smart structures capable of adapting their shapes to changing operating conditions. This effect can be useful in wind energy systems with composite blades for improving the rotor operational range as a passive control strategy. However, it is difficult to design such structures in order to attain a desired angle when bent. This paper proposes a metamodel-based methodology to design laminates with bend-twist coupling effect by means of genetic algorithms (GA) and artificial neural networks (ANN) integrated with a finite element model (FEM) capable of defining the stacking sequence that a laminate needs to reach a certain twist angle when submitted to bending load. The genetic algorithm uses a deterministic tournament for selection, a two-point method for crossover and an ANN trained with FEM simulations is used as the fitness function for reducing computational time. This strategy could ease the design of this type of structures in practical scenarios.</p>