Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Voyce, Ryan

  • Google
  • 2
  • 9
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Routes to Increase Performance for Antimony Selenide Solar Cells using Inorganic Hole Transport Layers6citations
  • 2022Exploring the Role of Temperature and Hole Transport Layer on the Ribbon Orientation and Efficiency of Sb2Se3 cells Deposited via Thermal Evaporationcitations

Places of action

Chart of shared publication
Zoppi, Guillaume
2 / 36 shared
Qu, Yongtao
1 / 11 shared
Phillips, Laurie J.
1 / 6 shared
Barrioz, Vincent
2 / 26 shared
Beattie, Neil
2 / 18 shared
Hutter, Os
2 / 9 shared
Major, Jonathan D.
1 / 5 shared
Campbell, Stephen
2 / 9 shared
Gibson, Elizabeth A.
1 / 4 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Zoppi, Guillaume
  • Qu, Yongtao
  • Phillips, Laurie J.
  • Barrioz, Vincent
  • Beattie, Neil
  • Hutter, Os
  • Major, Jonathan D.
  • Campbell, Stephen
  • Gibson, Elizabeth A.
OrganizationsLocationPeople

document

Exploring the Role of Temperature and Hole Transport Layer on the Ribbon Orientation and Efficiency of Sb2Se3 cells Deposited via Thermal Evaporation

  • Zoppi, Guillaume
  • Barrioz, Vincent
  • Beattie, Neil
  • Hutter, Os
  • Gibson, Elizabeth A.
  • Voyce, Ryan
  • Campbell, Stephen
Abstract

Antimony selenide (Sb2Se3) has emerged as a promising candidate for next generation solar cell devices due to its non-toxicity, low cost, and earth abundance. Coupling these factors with its promising optoelectrical properties of its high absorption coefficient and almost ideal band gap for single-junction cells yields an incredibly attractive absorber material. Issues in the material come from poor carrier management, particularly in the mobility of photogenerated carriers within the absorber layer and through the immediate interfaces. The orientation of the (Sb4Se6)n ribbons grown via thermal evaporation was investigated by varying the deposition temperature and the post-annealing treatment. 300 °C as the deposition temperature was most conducive to promoting ribbon orientations which were perpendicular to the substrate. Annealing effects were shown to be able to induce crystallinity in films at a lower temperature than the deposition temperature as well as being able to influence orientation away from (hk0) orientations. Using these parameters, the effect of 15 nm thick NiOX and MoOX as Hole Transport Layer (HTL) materials deposited via electron-beam evaporation in antimony selenide solar cells is investigated in superstrate and substrate configurations. Notable improvements were found to the efficiency of the devices when NiOX was considered as the HTL, but a degradation occurred when fabricated with MoOX in superstrate configuration; substrate configuration was only viable with a NiOX HTL.

Topics
  • Deposition
  • impedance spectroscopy
  • mobility
  • annealing
  • toxicity
  • crystallinity
  • evaporation
  • Antimony