Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Palmstrom, Axel

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Structural Stability of Tin-Lead Halide Perovskite Solar Cellscitations

Places of action

Chart of shared publication
Ratcliff, Erin L.
1 / 2 shared
Mundt, Laura E.
1 / 2 shared
Schelhas, Laura T.
1 / 11 shared
Zhu, Kai
1 / 3 shared
Berry, Joseph J.
1 / 11 shared
Tong, Jinhui
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Ratcliff, Erin L.
  • Mundt, Laura E.
  • Schelhas, Laura T.
  • Zhu, Kai
  • Berry, Joseph J.
  • Tong, Jinhui
OrganizationsLocationPeople

document

Structural Stability of Tin-Lead Halide Perovskite Solar Cells

  • Ratcliff, Erin L.
  • Mundt, Laura E.
  • Schelhas, Laura T.
  • Zhu, Kai
  • Berry, Joseph J.
  • Tong, Jinhui
  • Palmstrom, Axel
Abstract

One of the key features that makes halide perovskite solar cells such an attractive and intensely researched photovoltaic (PV) technology, is the tunability of the bandgap of these halide perovskite materials [1], [2]. Shortly after it was established that the bandgap could be increased to 1.7-1.8 eV, investigations into the application for silicon based tandem solar cells launched. Within a few years, conversion efficiencies of up to 28 % have been reported [3]. Concurrently, the interest in commercial application of this technology emerged and have rapidly increased. Whereas there are advantages to piggy backing on an established PV technology such as silicon, efforts to develop all-perovskite tandem solar cells are of considerable interest. Partly substituting the metal cation in the ABX3 perovskite enables the low bandgap absorbers required for an all-perovskite tandem solar cell. One common approach is to partially substitute the lead with tin, however these materials often suffered from poor stability. Therefore the development of an efficient, stable mixed tin-lead perovskite is key to enabling all-perovskite tandem solar cells.

Topics
  • perovskite
  • impedance spectroscopy
  • Silicon
  • tin