People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duck, Benjamin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Current encapsulation technologies for perovskite solar cells
- 2023Perovskite fabrication using chemical vapor deposition (CVD) technology
- 2023Perovskite fabrication using chemical vapor deposition (CVD) technology
- 2020Strategically Constructed Bilayer Tin (IV) Oxide as Electron Transport Layer Boosts Performance and Reduces Hysteresis in Perovskite Solar Cellscitations
- 2019Lattice Strain Causes Non-Radiative Losses in Halide Perovskitescitations
- 2018Local Strain Heterogeneity Influences the Optoelectronic Properties of Halide Perovskites
- 2018Passivation of Crystalline Perovskite Semiconductors and the Impact on Solar Cell Performance
- 2016Energy Yield Potential of Perovskite-Silicon Tandem Devicescitations
Places of action
Organizations | Location | People |
---|
document
Energy Yield Potential of Perovskite-Silicon Tandem Devices
Abstract
Metal-halide perovskite photovoltaic devices have recently become of great interest to the research community with efficiencies of the thin film devices already reported to exceed a single junction cell efficiency of 20%. Of particular interest with this type of device is its potential to be integrated with the well established silicon photovoltaic technology into a monolithic tandem device with the potential to deliver efficiencies of greater than 30%. In such devices the most attractive prospect is to monolithically integrate the perovskite and silicon materials into a planar single device for ease of deposition and device construction. Such a series connected device comes with inherent current matching restrictions on the operating performance of the individual junctions when working in tandem. These restrictions significantly complicate the calculation of potential energy yield for such a tandem device due to the impact of spectrum, angle of incidence and temperature. We model the performance of a tandem device using experimentally determined performance characteristics combined with representative resource and environment datasets to evaluate the energy yield potential of perovskite-silicon tandem under outdoor conditions. We observe that the largest impact is caused by the spectral irradiance distribution (7.6%) followed by angle of incidence (2.7%) and temperature response differential (0.7%). Our modelling indicates that these combine to alter the energy yield for a tandem device by 4.5%.