People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Norman, Andrew G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
document
Implementation of Tunneling Passivated Contacts into Industrially Relevant n-Cz Si Solar Cells
Abstract
We identify bottlenecks, and propose solutions, to implement a B-diffused front emitter and a backside pc-Si/SiO2 pasivated tunneling contact into high efficiency n-Cz Si cells in an industrially relevant way. We apply an O-precipitate dissolution treatment to make n-Cz wafers immune to bulk lifetime process degradation, enabling robust, passivated B front emitters with J0 <; 20fA/cm2. Adding ultralow recombination n+ pc-Si/SiO2 back contacts enables pre-metallized cells with iVoc=720 mV and J0=8.6 fA/cm2. However, metallization significantly degrades performance of these contacts due to pinholes and possibly, grain boundary diffusion of primary metal and source contaminates such as Cu. An intermediate, doped a-Si:H capping layer is found to significantly block the harmful metal penetration into pc-Si.