Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ager, J. W.

  • Google
  • 11
  • 45
  • 134

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2013P-type and undoped InGaN across the entire alloy composition rangecitations
  • 2013P-type InGaN across the entire alloy composition range13citations
  • 2012Embedded binary eutectic alloy nanostructures4citations
  • 2009Properties of native point defects in In1-xAlxN alloys3citations
  • 2008Characterization of MG-doped InGaN and InALN alloys grown by MBE for solar applications6citations
  • 2008Band gap bowing parameter of In1-x Alx N70citations
  • 2008High efficiency InAlN-based solar cells5citations
  • 2008Low-temperature grown compositionally graded InGaN films19citations
  • 2002Band anticrossing in highly mismatched group II-VI semiconductor alloyscitations
  • 2002Band anticrossing effects in MgyZn1-yTe 1-xSex alloys12citations
  • 2000Synthesis of III-Nx-V1-x Thin Films by N Ion Implantation2citations

Places of action

Chart of shared publication
Alarcon-Llado, E.
2 / 4 shared
Mayer, M. A.
2 / 5 shared
Walukiewicz, W.
10 / 87 shared
Wang, Ke
1 / 18 shared
Nanishi, Y.
2 / 9 shared
Araki, T.
2 / 8 shared
Katsuki, T.
2 / 3 shared
Wang, K.
1 / 27 shared
Stone, P. R.
1 / 9 shared
Boswell-Koller, C. N.
1 / 2 shared
Chrzan, D. C.
1 / 6 shared
Sherburne, M. P.
1 / 2 shared
Dubon, O. D.
1 / 40 shared
Liao, C. Y.
1 / 6 shared
Haller, E. E.
8 / 30 shared
Minor, A. M.
1 / 10 shared
Watanabe, M.
1 / 5 shared
Guzman, J.
1 / 2 shared
Lieten, R. R.
1 / 1 shared
Yuan, C. W.
1 / 2 shared
Conry, T.
1 / 2 shared
Beeman, J. W.
3 / 21 shared
Bustillo, K. C.
1 / 3 shared
Shin, S. J.
1 / 2 shared
Sawyer, C. A.
1 / 3 shared
Lu, H.
1 / 15 shared
Jones, R. E.
4 / 8 shared
Li, S. X.
1 / 5 shared
Schaff, W. J.
4 / 10 shared
Matthews, K. D.
1 / 1 shared
Chen, X.
3 / 33 shared
Eastman, L. F.
1 / 1 shared
Hao, D.
1 / 1 shared
Broesler, R.
2 / 8 shared
Williamson, T. L.
1 / 1 shared
Hoffbauer, M. A.
1 / 1 shared
Liliental-Weber, Z.
1 / 25 shared
Miller, N.
1 / 3 shared
Wu, J.
3 / 56 shared
Ramdas, A.
1 / 1 shared
Miotkowski, I.
2 / 2 shared
Shan, W.
2 / 16 shared
Ramdas, A. K.
1 / 1 shared
Miotkowska, S.
1 / 1 shared
Ridgway, M. C.
1 / 38 shared
Chart of publication period
2013
2012
2009
2008
2002
2000

Co-Authors (by relevance)

  • Alarcon-Llado, E.
  • Mayer, M. A.
  • Walukiewicz, W.
  • Wang, Ke
  • Nanishi, Y.
  • Araki, T.
  • Katsuki, T.
  • Wang, K.
  • Stone, P. R.
  • Boswell-Koller, C. N.
  • Chrzan, D. C.
  • Sherburne, M. P.
  • Dubon, O. D.
  • Liao, C. Y.
  • Haller, E. E.
  • Minor, A. M.
  • Watanabe, M.
  • Guzman, J.
  • Lieten, R. R.
  • Yuan, C. W.
  • Conry, T.
  • Beeman, J. W.
  • Bustillo, K. C.
  • Shin, S. J.
  • Sawyer, C. A.
  • Lu, H.
  • Jones, R. E.
  • Li, S. X.
  • Schaff, W. J.
  • Matthews, K. D.
  • Chen, X.
  • Eastman, L. F.
  • Hao, D.
  • Broesler, R.
  • Williamson, T. L.
  • Hoffbauer, M. A.
  • Liliental-Weber, Z.
  • Miller, N.
  • Wu, J.
  • Ramdas, A.
  • Miotkowski, I.
  • Shan, W.
  • Ramdas, A. K.
  • Miotkowska, S.
  • Ridgway, M. C.
OrganizationsLocationPeople

document

High efficiency InAlN-based solar cells

  • Walukiewicz, W.
  • Jones, R. E.
  • Chen, X.
  • Haller, E. E.
  • Schaff, W. J.
  • Broesler, R.
  • Ager, J. W.
Abstract

The band gap energies of the In<sub>1-x</sub>Al<sub>x</sub>N alloys are continuously tunable across the solar spectrum, making them good candidates for high efficiency solar cells. In particular, multijunction solar cells could be fabricated entirely from different compositions of this one alloy system. From modeling experimental measurements of the optical absorption coefficient in alloys with 0 ≤ × ≤ 0.6, a band gap bowing parameter of 4.8 ± 0.5 eV is found for the alloy system. With this number, the alloy compositions for two and three junction tandem cells with maximum theoretical power conversion efficiencies can be determined. Two junction InAlN / Si solar cells are also promising structures for high efficiency solar cells, due to the properties of the interface between n-type InAlN and p-type Si, as well as the band gaps of the respective materials. The theoretical efficiency (detailed balance) for the In<sub>0.60</sub>Al<sub>0.40</sub>N / Si tandem cell is 41%. © 2008 IEEE.

Topics
  • impedance spectroscopy
  • alloy composition