People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moerk, Jesper
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Experimental realization of deep sub-wavelength confinement of light in a topology-optimized InP nanocavitycitations
- 2021Unidirectional quantum transport in optically driven V-type quantum dot chainscitations
- 2019Systematically Varying the Active Material Volume in a Photonic Crystal Nanolaser
- 2019Doping technologies for InP membranes on silicon for nanolaserscitations
- 2018Benchmarking state-of-the-art optical simulation methods for analyzing large nanophotonic structures
- 2018Designing Single-Photon Sources: Towards Unity
- 2018Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavitiescitations
- 2018Which Computational Methods Are Good for Analyzing Large Photonic Crystal Membrane Cavities?
- 2017Comparison of Five Computational Methods for Computing Q Factors in Photonic Crystal Membrane Cavities
- 2017Benchmarking five computational methods for analyzing large photonic crystal membrane cavitiescitations
- 2016Comparison of four computational methods for computing Q factors and resonance wavelengths in photonic crystal membrane cavities
- 2015Impact of slow-light enhancement on optical propagation in active semiconductor photonic crystal waveguidescitations
- 2013Ultrahigh-speed hybrid laser for silicon photonic integrated chips
- 2012Electromagnetic Scattering in Micro- and Nanostructured Materials.
- 2012Slow-light enhancement of spontaneous emission in active photonic crystal waveguides
- 2011Active III-V Semiconductor Photonic Crystal Waveguidescitations
- 2011Modelling of Active Semiconductor Photonic Crystal Waveguides and Robust Designs based on Topology Optimization
- 2010Analysis of optical properties of strained semiconductor quantum dots for electromagnetically induced transparency
- 2010Enhanced amplified spontaneous emission in III-V semiconductor photonic crystal waveguides
- 2003On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers
Places of action
Organizations | Location | People |
---|
document
Benchmarking five computational methods for analyzing large photonic crystal membrane cavities
Abstract
We benchmark five state-of-the-art computational methods by computing quality factors and resonance wavelengths in photonic crystal membrane L5 and L9 line defect cavities. The convergence of the methods with respect to resolution, degrees of freedom and number of modes is investigated. Convergence is not obtained for some of the methods, indicating that some are more suitable than others for analyzing line defect cavities.