Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wolff, N.

  • Google
  • 6
  • 48
  • 220

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Control of magnetoelastic coupling in Ni/Fe multilayers using He + ion irradiation4citations
  • 2021On the exceptional temperature stability of ferroelectric Al1-xScxN thin films82citations
  • 2020Surface functionalization of ZnO:Ag columnar thin films with AgAu and AgPt bimetallic alloy nanoparticles as an efficient pathway for highly sensitive gas discrimination and early hazard detection in batteriescitations
  • 2017Localized Synthesis of Iron Oxide Nanowires and Fabrication of High Performance Nanosensors Based on a Single Fe2 O3 Nanowire131citations
  • 2017Enhancing the conductivity of ZnO micro- and nanowire networks with gallium oxide1citations
  • 2017Functional NiTi grids for in situ straining in the TEM2citations

Places of action

Chart of shared publication
Langer, J.
1 / 8 shared
Kehlberger, A.
1 / 1 shared
Syskaki, M.-A.
1 / 1 shared
Ravelosona, D.
1 / 5 shared
Lamperti, A.
1 / 20 shared
Kienle, L.
6 / 22 shared
Masciocchi, G.
1 / 1 shared
Kläui, M.
1 / 12 shared
Jakob, G.
1 / 3 shared
Lotnyk, A.
1 / 6 shared
Borie, B.
1 / 1 shared
Ambacher, O.
1 / 11 shared
Lofink, F.
1 / 4 shared
Schönweger, G.
1 / 1 shared
Yassine, M.
1 / 1 shared
Kohlstedt, H.
1 / 11 shared
Fichtner, S.
1 / 3 shared
Christian, B.
1 / 2 shared
Islam, M. R.
1 / 4 shared
Santos-Carballal, D.
1 / 4 shared
Hoppe, M.
1 / 7 shared
Lupan, O.
2 / 14 shared
Cavers, H.
1 / 1 shared
Vahl, A.
1 / 1 shared
Adelung, R.
2 / 12 shared
De Leeuw, N.
1 / 1 shared
Hansen, S.
1 / 7 shared
Dankwort, T.
1 / 4 shared
Cadi-Essadek, A.
1 / 3 shared
Terasa, M-I
1 / 1 shared
Postica, V.
2 / 10 shared
Faupel, F.
1 / 30 shared
Lazari, E.
1 / 2 shared
Kaidas, V.
1 / 2 shared
Polonskyi, O.
1 / 7 shared
Duppel, V.
1 / 4 shared
Adelung, Rainer
2 / 120 shared
Ababii, N.
1 / 4 shared
Faupel, Franz
1 / 46 shared
Mishra, Prof. Yogendra Kumar
1 / 41 shared
Shree, S.
1 / 3 shared
Smazna, D.
2 / 8 shared
Schütt, F.
1 / 2 shared
Schürmann, U.
1 / 5 shared
Quandt, Eckhard
1 / 49 shared
Chluba, C.
1 / 2 shared
Junker, P.
1 / 3 shared
Miranda, R. Lima De
1 / 1 shared
Chart of publication period
2022
2021
2020
2017

Co-Authors (by relevance)

  • Langer, J.
  • Kehlberger, A.
  • Syskaki, M.-A.
  • Ravelosona, D.
  • Lamperti, A.
  • Kienle, L.
  • Masciocchi, G.
  • Kläui, M.
  • Jakob, G.
  • Lotnyk, A.
  • Borie, B.
  • Ambacher, O.
  • Lofink, F.
  • Schönweger, G.
  • Yassine, M.
  • Kohlstedt, H.
  • Fichtner, S.
  • Christian, B.
  • Islam, M. R.
  • Santos-Carballal, D.
  • Hoppe, M.
  • Lupan, O.
  • Cavers, H.
  • Vahl, A.
  • Adelung, R.
  • De Leeuw, N.
  • Hansen, S.
  • Dankwort, T.
  • Cadi-Essadek, A.
  • Terasa, M-I
  • Postica, V.
  • Faupel, F.
  • Lazari, E.
  • Kaidas, V.
  • Polonskyi, O.
  • Duppel, V.
  • Adelung, Rainer
  • Ababii, N.
  • Faupel, Franz
  • Mishra, Prof. Yogendra Kumar
  • Shree, S.
  • Smazna, D.
  • Schütt, F.
  • Schürmann, U.
  • Quandt, Eckhard
  • Chluba, C.
  • Junker, P.
  • Miranda, R. Lima De
OrganizationsLocationPeople

document

Enhancing the conductivity of ZnO micro- and nanowire networks with gallium oxide

  • Kienle, L.
  • Mishra, Prof. Yogendra Kumar
  • Wolff, N.
  • Adelung, R.
  • Shree, S.
  • Smazna, D.
  • Schütt, F.
Abstract

<p>In this work a successful hybridization strategy for ZnO micro- and nanowire's surface with Ga<sub>2</sub>O<sub>3</sub> nano-networks is presented and briefly discussed. The ZnO micro- and nanowires are grown by an upgraded flame transport synthesis (FTS) approach. The ZnO wires have been coated with gallium acetylacetonate (Ga(acac)3) organic solution followed by subsequent annealing in air and argon atmospheres. Depending on the annealing conditions, distinct impacts on the electrical properties of individual hybridized ZnO microwires are observed which demonstrate a remarkable increase in conductivity (factor of 20 for air and 200 for argon environments). Scanning transmission electron microscopy (STEM) in combination with energy-dispersive X-ray spectroscopy (EDX) confirmed that the gallium oxide nanoparticles form, alter the ZnO surface features and might effect a doping in such a way. High-resolution transmission electron microscopy (HRTEM) studies of the hybridized ZnO surface reveal that both the β-/γ-Ga<sub>2</sub>O<sub>3</sub> phases are present as nanoinclusions in the top layer. These investigations confirmed noticeable modifications in the ZnO lattice caused by the hybridization with gallium oxide. Moreover, the structural changes in the ZnO surface were traced via Raman spectroscopy examinations revealing an increase in the scattering peaks intensity at 569 cm<sup>-1</sup> and 646 cm<sup>-1</sup> which are responsible for the native oxygen vacancies in ZnO and a corresponding blue shift for the E<sub>2</sub>(high) peak indicates an introduction of strain into ZnO lattice.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • phase
  • Oxygen
  • transmission electron microscopy
  • annealing
  • Energy-dispersive X-ray spectroscopy
  • wire
  • Raman spectroscopy
  • Gallium