Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Löschner, Hans

  • Google
  • 2
  • 11
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2006Ion-beam modification of high-temperature superconductor thin films for the fabrication of superconductive nanodevicescitations
  • 2006Ion-beam direct-structuring of high-temperature superconductors25citations

Places of action

Chart of shared publication
Dineva, Milena
2 / 2 shared
Siraj, Khurram
2 / 12 shared
Marksteiner, Markus
2 / 4 shared
Enzenhofer, T.
2 / 2 shared
Bäuerle, Dieter
2 / 11 shared
Korntner, Regina
2 / 2 shared
Lang, Wolfgang
2 / 24 shared
Peruzzi, Martin
2 / 7 shared
Platzgummer, Elmar
2 / 4 shared
Pedarnig, Johannes D.
2 / 21 shared
Cekan, Ewald
2 / 3 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Dineva, Milena
  • Siraj, Khurram
  • Marksteiner, Markus
  • Enzenhofer, T.
  • Bäuerle, Dieter
  • Korntner, Regina
  • Lang, Wolfgang
  • Peruzzi, Martin
  • Platzgummer, Elmar
  • Pedarnig, Johannes D.
  • Cekan, Ewald
OrganizationsLocationPeople

document

Ion-beam modification of high-temperature superconductor thin films for the fabrication of superconductive nanodevices

  • Dineva, Milena
  • Siraj, Khurram
  • Marksteiner, Markus
  • Löschner, Hans
  • Enzenhofer, T.
  • Bäuerle, Dieter
  • Korntner, Regina
  • Lang, Wolfgang
  • Peruzzi, Martin
  • Platzgummer, Elmar
  • Pedarnig, Johannes D.
  • Cekan, Ewald
Abstract

Ion-beam irradiation allows for a direct modification of the electric properties of high-temperature superconductors (HTS). Computer simulations of the ion-target interactions reveal that He+ ions at energies above 60 keV do not implant into 100-nm thick films of YBa2Cu3O7 but can create about one defect per unit cell at technically feasible ion doses of a few 10^15 cm^-2. These point defects are primarily displacements of the oxygen atoms of YBa2Cu3O7. X-ray analysis and measurements of the electrical resistivity after cumulative ion irradiation confirm that the main building blocks of the crystal structure remain intact although the superconductor is converted to an insulator. Superconductive nanodevices can be fabricated with this method by directing a low-divergence beam of light ions at a thin film of HTS through a mask placed at a distance from the surface of the material. The illuminated areas of the film are converted from superconducting to semiconducting and even insulating in a single-step process.

Topics
  • impedance spectroscopy
  • surface
  • resistivity
  • thin film
  • simulation
  • Oxygen
  • point defect