People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zeijl, Henk Van
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Patterning of fine-features in nanoporous films synthesized by spark ablation
Abstract
<p>Advances in semiconductor device manufacturing technologies are enabled by the development and application of novel materials. Especially one class of materials, nanoporous films, became building blocks for a broad range of applications, such as gas sensors and interconnects. Therefore, a versatile fabrication technology is needed to integrate these films and meet the trend towards device miniaturization and high integration density. In this study, we developed a novel method to pattern nanoporous thin films with high flexibility in material selection. Herein, Au and ZnO nanoparticles were synthesized by spark ablation and printed on a Ti/TiO2 adhesion layer, which was exposed by a lithographic stencil mask. Subsequently, the photoresist was stripped by a cost-efficient lift-off process. Nanoporous patterned features were thus obtained and the finest feature has a gap width of 0.6 μ fm and a line width of 2 μ fm. Using SEM and profilometers to investigate the structure of the films, it was demonstrated that the lift-off process had a minor impact on the microstructure and thickness. The samples presented a rough surface and high porosity, indicating a large surface-to-volume ratio. This is supported by the measured conductivity of Au nanoporous film, which is 12% of the value for bulk Au. As lithographic stencil printing is compatible with conventional lithographic pattering, this method enables further application on mass production of various nanoporous film-based devices in the future.</p>