Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gonzalez, David Conchouso

  • Google
  • 3
  • 7
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Piezoelectric transducer array microspeaker5citations
  • 2015Towards a digital sound reconstruction MEMS device: Characterization of a single PZT based piezoelectric actuator8citations
  • 2014Crude oil water-cut sensing with disposable laser ablated and inkjet printed RF microfluidics10citations

Places of action

Chart of shared publication
Kosel, Jürgen
1 / 32 shared
Arevalo, Dr Arpys
2 / 2 shared
Castro, David
2 / 2 shared
Foulds, Ian G.
3 / 4 shared
Jaber, Nizar
1 / 3 shared
Mckerricher, Garret
1 / 7 shared
Cook, Benajmin S.
1 / 1 shared
Chart of publication period
2016
2015
2014

Co-Authors (by relevance)

  • Kosel, Jürgen
  • Arevalo, Dr Arpys
  • Castro, David
  • Foulds, Ian G.
  • Jaber, Nizar
  • Mckerricher, Garret
  • Cook, Benajmin S.
OrganizationsLocationPeople

document

Crude oil water-cut sensing with disposable laser ablated and inkjet printed RF microfluidics

  • Gonzalez, David Conchouso
  • Mckerricher, Garret
  • Cook, Benajmin S.
  • Foulds, Ian G.
Abstract

This paper presents the first microwave microfluidic crude oil/water cut sensor. Anhydrous crude oil is been tested and the device provides a measurable frequency shift of 500MHz at 50% (vol.) water content and a 50MHz shift for a 5% (vol.) water concentration. The sensor is realized with a low-cost direct write fabrication method. This involves laser ablation, inkjet printing, laser heating, along with low temperature thermal compression bonding of Poly (methylmethacrylate) (PMMA) sheets. By using localized laser sintering a conductivity of 2.5e6 S/m is achieved for silver nanoparticle ink without the need to heat the entire substrate above its glass transition temperature of (105 °C). The dielectric properties of PMMA are characterized to 1 GHz and a simulation model is offered for analyzing the dielectric properties of crude oil. This work demonstrates that a small form factor and low cost device is capable of precise water-cut measurements. © 2014 IEEE.

Topics
  • nanoparticle
  • impedance spectroscopy
  • silver
  • simulation
  • glass
  • glass
  • glass transition temperature
  • sintering
  • laser sintering
  • laser ablation