Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chmela, E.

  • Google
  • 3
  • 10
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2003A low hydraulic capacitance pressure sensor for integration with a micro viscosity detector11citations
  • 2001Local anodic bonding of Kovar to Pyrex aimed at high-pressure, solvent-resistant microfluidic connections24citations
  • 2000Failure mechanisms of pressurized microchannels, model and experimentscitations

Places of action

Chart of shared publication
Tijssen, R. P.
2 / 2 shared
Gardeniers, Han
3 / 26 shared
Elwenspoek, Michael Curt
3 / 17 shared
Heyden, F. H. J. Van Der
1 / 1 shared
Van Den Berg, Albert
3 / 40 shared
Blom, M. T.
3 / 6 shared
Berenschot, Erwin J. W.
1 / 36 shared
Tijssen, R.
1 / 1 shared
Tas, Niels Roelof
1 / 12 shared
Pandraud, G.
1 / 7 shared
Chart of publication period
2003
2001
2000

Co-Authors (by relevance)

  • Tijssen, R. P.
  • Gardeniers, Han
  • Elwenspoek, Michael Curt
  • Heyden, F. H. J. Van Der
  • Van Den Berg, Albert
  • Blom, M. T.
  • Berenschot, Erwin J. W.
  • Tijssen, R.
  • Tas, Niels Roelof
  • Pandraud, G.
OrganizationsLocationPeople

document

Failure mechanisms of pressurized microchannels, model and experiments

  • Tijssen, R. P.
  • Gardeniers, Han
  • Tas, Niels Roelof
  • Elwenspoek, Michael Curt
  • Chmela, E.
  • Van Den Berg, Albert
  • Pandraud, G.
  • Blom, M. T.
Abstract

Microchannels were created by fusion bonding of a Pyrex and a thermally oxidized silicon wafer. The maximum pressure which can be applied to these channels was investigated. In order to find the relation between this maximum pressure, channel geometry, materials elasticity and bond energy an energy model was developed. It was shown that the model is substantiated by the pressure data, from which it could be calculated that the effective bond energy increased from 0.018 J/m2 to 0.19 J/m2 for an annealing temperature ranging from 3 10°C to 47OoC.

Topics
  • impedance spectroscopy
  • experiment
  • Silicon
  • elasticity
  • annealing