Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bonnema, Maarten J. S.

  • Google
  • 2
  • 5
  • 0

University of Twente

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Microfabrication Technology for Isolated Silicon Sidewall Electrodes and Heaterscitations
  • 2024Inline and Real-Time Microfluidic Relative Permittivity Sensor Using Highly Doped Silicon Sidewall Electrodescitations

Places of action

Chart of shared publication
Veltkamp, Henk-Willem
2 / 2 shared
Lötters, Joost Conrad
1 / 2 shared
Wiegerink, Remco
2 / 8 shared
Alveringh, Dennis
1 / 4 shared
Lötters, Joost C.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Veltkamp, Henk-Willem
  • Lötters, Joost Conrad
  • Wiegerink, Remco
  • Alveringh, Dennis
  • Lötters, Joost C.
OrganizationsLocationPeople

document

Inline and Real-Time Microfluidic Relative Permittivity Sensor Using Highly Doped Silicon Sidewall Electrodes

  • Bonnema, Maarten J. S.
  • Veltkamp, Henk-Willem
  • Alveringh, Dennis
  • Wiegerink, Remco
  • Lötters, Joost C.
Abstract

This paper reports an inline sensor for the<br/>real-time measurement of the relative permittivity of a<br/>continuously flowing fluid, with electrodes that are<br/>electrically isolated from the fluid. The sensor has been<br/>characterised for relative permittivity values ranging from<br/>1 to 80 – including water and water-containing mixtures –<br/>showing an accuracy within 3% of full scale. The proposed<br/>sensor contains multiple parallel microchannels, each of<br/>which has parallel electrodes in the sidewall, resulting in a<br/>low pressure drop and high sensitivity while the internal<br/>volume is only 50 nL. The fabrication technology is<br/>scalable: equally deep microchannels with widths of 5, 10,<br/>20, and 40 μm are demonstrated. The technology is also<br/>compatible with other inline sensors, enabling further<br/>on-chip integration.

Topics
  • impedance spectroscopy
  • dielectric constant
  • Silicon