People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Conn, Andrew T.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2021Liquid metal logic for soft roboticscitations
- 2021B:Ionic Glove: A Soft Smart Wearable Sensory Feedback Device for Upper Limb Robotic Prosthesescitations
- 2021B:Ionic Glove: A Soft Smart Wearable Sensory Feedback Device for Upper Limb Robotic Prosthesescitations
- 2021Development of a more clinically relevant bladder and urethral model for catheter testingcitations
- 2019Pellicular Morphing Surfaces for Soft Robotscitations
- 2019Pellicular Morphing Surfaces for Soft Robotscitations
- 2019A soft matter computer for soft robotscitations
- 2019Tiled Auxetic Cylinders for Soft Robotscitations
- 2017Respiratory Simulator for Robotic Respiratory Tract Treatments
- 2012Smart Radially Folding Structurescitations
Places of action
Organizations | Location | People |
---|
article
B:Ionic Glove: A Soft Smart Wearable Sensory Feedback Device for Upper Limb Robotic Prostheses
Abstract
Upper limb robotic prosthetic devices currently lack adequate sensory feedback, contributing to a high rejection rate. Incorporating affective sensory feedback into these devices reduces phantom limb pain and increases control and acceptance. To address the lack of sensory feedback we present the B:Ionic glove, wearable over a robotic hand which contains sensing, computation and actuation on board. It uses shape memory alloy (SMA) actuators integrated into an armband to gently squeeze the user’s arm when pressure is sensed in novel electro-fluidic fingertip sensors and decoded through soft matter logic. We found that a circular electro-fluidic sensor cavity generated the most sensitive fingertip sensor and considered a computational configuration to convey different information from robot to user. A user study was conducted to characterise the tactile interaction capabilities of the device. No significant difference was found between the skin sensitivity threshold of participants’ lower and upper arm. They found it easier to distinguish stimulation locations than strengths. Finally, we demonstrate a proof-of-concept of the complete device, illustrating how it could be used to grip an object, solely from the affective tactile feedback provided by the B:Ionic glove. The B:Ionic glove is a step towards the integration of natural, soft sensory feedback into robotic prosthetic devices.