People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liu, Xiaolong
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Wetting Properties of Black Silicon Layers Fabricated by Different Techniquescitations
- 2024(invited talk) Sulfur-hyperdoped silicon by ultrashort laser processing
- 2024Contactless analysis of surface passivation and charge transfer at the TiO 2-Si interfacecitations
- 2024Contactless analysis of surface passivation and charge transfer at the TiO 2-Si interfacecitations
- 2024Impact of post-ion implantation annealing on Se-hyperdoped Gecitations
- 2024Impact of post-ion implantation annealing on Se-hyperdoped Gecitations
- 2024Bridging the gap between surface physics and photonicscitations
- 2024Contactless analysis of surface passivation and charge transfer at the TiO2-Si interfacecitations
- 2023(oral talk) Effective carrier lifetime in ultrashort pulse laser hyperdoped silicon: dopant concentration dependence and practical upper limits
- 2023Excellent Responsivity and Low Dark Current Obtained with Metal-Assisted Chemical Etched Si Photodiodecitations
- 2023Properties of Black Silicon Layers Fabricated by Different Techniques for Solar Cell Applicationscitations
- 2022Perspectives on Black Silicon in Semiconductor Manufacturing: Experimental Comparison of Plasma Etching, MACE and Fs-Laser Etchingcitations
- 2022Millisecond-Level Minority Carrier Lifetime in Femtosecond Laser-Textured Black Siliconcitations
Places of action
Organizations | Location | People |
---|
article
Millisecond-Level Minority Carrier Lifetime in Femtosecond Laser-Textured Black Silicon
Abstract
Femtosecond laser-textured black silicon (fs-bSi) is known to suffer from heavy minority carrier recombination resulted from laser irradiation. In this paper, we demonstrate that the thermal annealing step, generally used to recover the crystal damage, could improve the minority carrier lifetime of the fs-bSi wafers only from 8 μs to 12 μs, even when using as high temperature as 800 °C. However, with an optimized wet chemical etching process, we obtain a high minority carrier lifetime of 2 ms without sacrificing the optical properties of the samples, i.e., the absorptance remains above 90% in the studied wavelength range (250–1100 nm). Increasing the etching time further leads to a total recovery of the lifetime up to 10.5 ms, which proves that the damage originating from the fs-laser texturing extends only to the near-surface layer (a few μm) of silicon.