Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pietzonka, Ines

  • Google
  • 2
  • 17
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Quantitative measurements of internal electric fields with differential phase contrast microscopy on InGaN/GaN quantum well structures35citations
  • 2014Novel evaluation procedure for internal and extraction efficiency of high-power blue LEDs1citations

Places of action

Chart of shared publication
Müllercaspary, Knut
1 / 1 shared
Rosenauer, Andreas
1 / 13 shared
Strassburg, Martin
2 / 6 shared
Lohr, Matthias
1 / 2 shared
Zweck, Josef
1 / 8 shared
Mehrtens, Thorsten
1 / 5 shared
Wächter, Clemens
1 / 1 shared
Schregle, Ralph
1 / 1 shared
Jetter, Michael
1 / 2 shared
Rafailov, Edik U.
1 / 12 shared
Zerova, Vera L.
1 / 1 shared
Yadav, Amit
1 / 4 shared
Zulonas, Modestas
1 / 1 shared
Titkov, Ilya E.
1 / 1 shared
Karpov, Sergey Yu.
1 / 2 shared
Lugauer, Hans-Juergen
1 / 1 shared
Galler, Bastian
1 / 1 shared
Chart of publication period
2016
2014

Co-Authors (by relevance)

  • Müllercaspary, Knut
  • Rosenauer, Andreas
  • Strassburg, Martin
  • Lohr, Matthias
  • Zweck, Josef
  • Mehrtens, Thorsten
  • Wächter, Clemens
  • Schregle, Ralph
  • Jetter, Michael
  • Rafailov, Edik U.
  • Zerova, Vera L.
  • Yadav, Amit
  • Zulonas, Modestas
  • Titkov, Ilya E.
  • Karpov, Sergey Yu.
  • Lugauer, Hans-Juergen
  • Galler, Bastian
OrganizationsLocationPeople

document

Novel evaluation procedure for internal and extraction efficiency of high-power blue LEDs

  • Rafailov, Edik U.
  • Strassburg, Martin
  • Zerova, Vera L.
  • Yadav, Amit
  • Zulonas, Modestas
  • Titkov, Ilya E.
  • Pietzonka, Ines
  • Karpov, Sergey Yu.
  • Lugauer, Hans-Juergen
  • Galler, Bastian
Abstract

<p>Internal quantum efficiency (IQE) of a high-brightness blue LED has been evaluated from the external quantum efficiency measured as a function of current at room temperature. Processing the data with a novel evaluation procedure based on the ABC-model, we have determined separately IQE of the LED structure and light extraction efficiency (LEE) of UX:3 chip. <br/></p><p><br/></p><p>Full text <br/></p><p></p><p class="MsoNormal">Nowadays, understanding of LED efficiency behavior at high currents is quite critical to find ways for further improve­ment of III-nitride LED performance [1]. External quantum ef­ficiency <i style="mso-bidi-font-style:normal">η<sub>e</sub> </i>(EQE) provides integral information on the recom­bination and photon emission processes in LEDs. Meanwhile EQE is the product of IQE <i style="mso-bidi-font-style:normal">η<sub>i</sub></i><sub> </sub>and LEE <i style="mso-bidi-font-style:normal">η<sub>ext</sub></i> at negligible car­rier leakage from the active region. Separate determination of IQE and LEE would be much more helpful, providing correla­tion between these parameters and specific epi-structure and chip design. In this paper, we extend the approach of [2,3] to the whole range of the current/optical power variation, provid­ing an express tool for separate evaluation of IQE and LEE. <br/> We studied an InGaN-based LED fabricated by Osram OS. LED structure grown by MOCVD on sapphire substrate was processed as UX:3 chip and mounted into the Golden Dragon package without molding. EQE was measured with Labsphere CDS-600 spectrometer. Plotting EQE <i style="mso-bidi-font-style:normal">versus</i> output power <i style="mso-bidi-font-style:normal">P</i> and finding the power <i style="mso-bidi-font-style:normal">P<sub>m</sub></i> corresponding to EQE maximum <i style="mso-bidi-font-style:normal">η<sub>m</sub></i> enables comparing the measurements with the analytical rela­tionships <i style="mso-bidi-font-style:normal">η<sub>i </sub>= Q/(Q+p<sup>1/2</sup>+p<sup>-1/2</sup>) ,p = P/P<sub>m</sub> , </i>and<i style="mso-bidi-font-style:normal"> Q = B/(AC) <sup>1/2</sup></i> where A, Band C are recombination constants [4]. As a result, maximum IQE value equal to QI(Q+2) can be found from the ratio <i style="mso-bidi-font-style:normal">η<sub>m/</sub>η<sub>e</sub></i> plotted as a function of <i style="mso-bidi-font-style:normal">p<sup>1/2 </sup>+p1<sup>-1/2</sup></i> (see Fig.la) and then LEE calculated as <i style="mso-bidi-font-style:normal">η<sub>ext</sub></i> = <i style="mso-bidi-font-style:normal">η<sub>m</sub></i> <i style="mso-bidi-font-style:normal">(Q+2)/Q</i> . Experimental EQE as a function of normalized optical power <i style="mso-bidi-font-style:normal">p</i> is shown in Fig. 1 b along with the analytical approximation based on the ABC­model. The approximation fits perfectly the measurements in the range of the optical power (or operating current) variation by eight orders of magnitude. <br/> In conclusion, new express method for separate evaluation of IQE and LEE of III-nitride LEDs is suggested and applied to characterization of a high-brightness blue LED. With this method, we obtained LEE from the free chip surface to the air as 69.8% and IQE as 85.7% at the maximum and 65.2% at the operation current 350 rnA. </p><p class="MsoNormal">[I] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, "Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies," 1. AppL Phys., vol. 114, no. 7, pp. 071101, Aug., 2013. </p><p class="MsoNormal">[2] C. van Opdorp and G. W. 't Hooft, "Method for determining effective non radiative lifetime and leakage losses in double-heterostructure las­ers," 1. AppL Phys., vol. 52, no. 6, pp. 3827-3839, Feb., 1981. </p><p class="MsoNormal">[3] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, "A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes," 1. AppL Phys., vol. 106, no. II, pp. 114508, Dec., 2009. </p><p class="MsoNormal">[4] Qi Dai, Qifeng Shan, ling Wang, S. Chhajed, laehee Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, Min-Ho Kim, and Yongjo Park, "Carrier recombination mechanisms and efficiency droop in GalnN/GaN light-emitting diodes," App/. Phys. Leu., vol. 97, no. 13, pp. 133507, Sept., 2010. </p><p/>

Topics
  • impedance spectroscopy
  • surface
  • extraction
  • nitride
  • laser absorption spectroscopy