People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cauwe, Maarten
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2020Development of an active high-density transverse intrafascicular micro-electrode probecitations
- 2020The use of ALD layers for hermetic encapsulation in the development of a flexible implantable micro electrode for neural recording and stimulation
- 2020The use of ALD layers for hermetic encapsulation in the development of a flexible implantable micro electrode for neural recording and stimulation
- 2019FITEP : a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayers
- 2019FITEP : a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayers
- 2019Ultra-long-term reliable encapsulation using an atomic layer deposited Hfo2/Al2o3/Hfo2 triple-interlayer for biomedical implantscitations
- 2019FITEP: a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayers
- 2017Ultra-thin biocompatible implantable chip for bidirectional communication with peripheral nervescitations
- 2017Ultra-thin biocompatible implantable chip for bidirectional communication with peripheral nervescitations
- 2017Accelerated hermeticity testing of biocompatible moisture barriers used for encapsulation of implantable medical devices
- 2015Sensitivity analysis of broadband on-wafer dielectric spectroscopy of yeast cell suspensions up to 110 GHzcitations
- 2013Parylene C for hermetic and flexible encapsulation of interconnects and electronic components
- 2011Frequency-dependent substrate characterization via an iterative pole search algorithmcitations
Places of action
Organizations | Location | People |
---|
article
Frequency-dependent substrate characterization via an iterative pole search algorithm
Abstract
The characterization of frequency-dependent material properties is an important issue in nowadays high-speed interconnect design. This letter presents a practical method to determine the complex permittivity of a substrate material, by combining measurements with simulations. A rational permittivity model is determined by searching for its poles and residues using an iterative optimization method. Its accuracy is verified by comparing coplanar waveguide measurements with simulations based on the new material model.