People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gil, Marta
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2019Differential microfluidic sensors based on dumbbell-shaped defect ground structures in microstrip technology : analysis, optimization, and applicationscitations
- 2007New left handed microstrip lines with Complementary Split Rings Resonators (CSRRs) etched in the signal stripcitations
- 2006On the electrical characteristics of complementary metamaterial resonatorscitations
Places of action
Organizations | Location | People |
---|
article
On the electrical characteristics of complementary metamaterial resonators
Abstract
In this letter, a method to obtain the electrical characteristics of complementary split ring resonators (CSRRs) coupled to planar transmission lines is presented. CSRRs have been recently proposed by some of the authors as new constitutive elements for the synthesis of metamaterials with negative effective permittivity, and they have been applied to the fabrication of meta-material-based circuits in planar technology. The method provides the electrical characteristics of CSRRs (including the intrinsic resonant frequency and the unloaded Q-factor), as well as the coupling capacitance between line and CSRRs, and the parameters of the host line. Parameter extraction from the proposed method is applied to two different structures corresponding to the basic cells of left handed (LH) and negative permittivity lines. The method is of actual interest for the design of microwave circuits and metama-terials based on these complementary resonant particles. © 2006, IEEE. All rights reserved.