Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marqués, Ricardo

  • Google
  • 1
  • 5
  • 83

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2004Left Handed Coplanar Waveguide Band Pass Filters Based on Bi-layer Split Ring Resonators83citations

Places of action

Chart of shared publication
Bonache, Jordi
1 / 11 shared
Lopetegi, Txema
1 / 1 shared
Sorolla, Mario
1 / 1 shared
Falcone, Francisco
1 / 10 shared
Martin, Ferran
1 / 13 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Bonache, Jordi
  • Lopetegi, Txema
  • Sorolla, Mario
  • Falcone, Francisco
  • Martin, Ferran
OrganizationsLocationPeople

article

Left Handed Coplanar Waveguide Band Pass Filters Based on Bi-layer Split Ring Resonators

  • Bonache, Jordi
  • Marqués, Ricardo
  • Lopetegi, Txema
  • Sorolla, Mario
  • Falcone, Francisco
  • Martin, Ferran
Abstract

A new type of compact band pass filters based on planar structures with three metal levels is proposed. The central layer consists on a coplanar waveguide (CPW) with periodic wire connections between the central strip and ground planes. In the upper and lower metal levels, split ring resonators (SRRs) are etched and aligned with the slots. The wires make the structure to behave as a microwave plasma, with a negative effective permittivity covering a wide frequency range. SRRs, which are magnetically coupled to the CPW, provide a negative magnetic permeability in a narrow frequency range above their resonant frequency. The result is a band pass structure which supports wave propagation in a frequency interval where negative permittivity and permeability coexist. The bandwidth of the structure can be controlled by tuning the resonant frequency of the upper and lower SRRs and the distance between SRRs. Fabricated prototype devices exhibit very low insertion losses in the pass band (<1.5 dB) and high frequency selectivity.

Topics
  • impedance spectroscopy
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • permeability
  • wire
  • aligned