Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kopecky, Vit

  • Google
  • 1
  • 3
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Effect of Magnetostatic Interactions on Twin Boundary Motion in NiMnGa Magnetic Shape Memory Alloy11citations

Places of action

Chart of shared publication
Vokoun, David
1 / 2 shared
Heczko, Oleg
1 / 12 shared
Beleggia, Marco
1 / 12 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Vokoun, David
  • Heczko, Oleg
  • Beleggia, Marco
OrganizationsLocationPeople

article

Effect of Magnetostatic Interactions on Twin Boundary Motion in NiMnGa Magnetic Shape Memory Alloy

  • Kopecky, Vit
  • Vokoun, David
  • Heczko, Oleg
  • Beleggia, Marco
Abstract

We investigated the effect of magnetostatic interactions on the field-induced reorientation of martensite variants in Ni<sub>50.0</sub>Mn<sub>27.5</sub>Ga<sub>22.5</sub>. The reorientation, achieved by sweeping a single Type-II twin boundary along the sample, was triggered by a twinning stress of about 0.1 MPa. However, depending on the initial position of the twin boundary, the magnetic field providing the critical stress varied in the range 832 kA/m. By taking into account the variants sizes and their mutual interactions, we explained the observed dependence of the switching field on the location of the boundary. The resulting match between model predictions and measurements illustrates the fundamental role played by demagnetization effects and magnetostatic interactions in magnetic shape memory effect.

Topics
  • twin boundary