People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skaik, Talal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024CNC-Machined and 3D-Printed Metal G-band Diplexers for Earth Observation Applicationscitations
- 2023A monolithically printed filtering waveguide aperture antennacitations
- 2023Lightweight, High-Q and High Temperature Stability Microwave Cavity Resonators Using Carbon-Fiber Reinforced Silicon-Carbide Ceramic Compositecitations
- 2023Compact Self-Supportive Filters Suitable for Additive Manufacturingcitations
- 2023Compact Monolithic 3D-Printed Wideband Filters Using Pole-Generating Resonant Irisescitations
- 2023Evaluation of 3D printed monolithic G-band waveguide componentscitations
- 2022A 3D printed 300 GHz waveguide cavity filter by micro laser sinteringcitations
- 2022D-band waveguide diplexer fabricated using micro laser sinteringcitations
- 2022A Narrowband 3-D Printed Invar Spherical Dual-Mode Filter With High Thermal Stability for OMUXscitations
- 2022Thermal stability analysis of 3D printed resonators using novel materialscitations
- 2021125 GHz frequency doubler using a waveguide cavity produced by stereolithographycitations
- 2020180 GHz Waveguide Bandpass Filter Fabricated by 3D Printing Technologycitations
Places of action
Organizations | Location | People |
---|
article
A monolithically printed filtering waveguide aperture antenna
Abstract
This letter presents the design of a 3<sup> rd</sup> order filtering waveguide aperture antenna based on coupled cavity resonators. Three offset-coupled rectangular waveguide cavities are employed in the design realizing two nested loaded-stubs without costing extra structure and size. The loaded-stubs introduce two controllable transmission zeroes and enhance the out-of-band realized gain selectivity. To validate the predicted results, a prototype operating at theX- band frequencies has been fabricated monolithically using the 3-D selective laser melting printing technique. The measured results are in very good agreement with the simulated results, showing a flat gain response of 7.0 ± 0.2 dBi from 9.5–10.5 GHz with very good out-of-band selectivity. The fractional bandwidth is about 10% at 10 GHz when S <sub>11</sub> = -20 dB. Compared to the previously designed filtering antennas, the proposed design has the advantages of stronger out-of-band gain selectivity and low profile.