Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mahmud, Rashad H.

  • Google
  • 1
  • 6
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023A monolithically printed filtering waveguide aperture antenna6citations

Places of action

Chart of shared publication
Skaik, Talal
1 / 12 shared
Nugoolcharoenlap, Ekasit
1 / 1 shared
Wang, Yi
1 / 27 shared
Yu, Yang
1 / 3 shared
Attallah, Moataz Moataz
1 / 96 shared
Jarjees, Raad S.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Skaik, Talal
  • Nugoolcharoenlap, Ekasit
  • Wang, Yi
  • Yu, Yang
  • Attallah, Moataz Moataz
  • Jarjees, Raad S.
OrganizationsLocationPeople

article

A monolithically printed filtering waveguide aperture antenna

  • Skaik, Talal
  • Nugoolcharoenlap, Ekasit
  • Wang, Yi
  • Yu, Yang
  • Attallah, Moataz Moataz
  • Mahmud, Rashad H.
  • Jarjees, Raad S.
Abstract

This letter presents the design of a 3<sup> rd</sup> order filtering waveguide aperture antenna based on coupled cavity resonators. Three offset-coupled rectangular waveguide cavities are employed in the design realizing two nested loaded-stubs without costing extra structure and size. The loaded-stubs introduce two controllable transmission zeroes and enhance the out-of-band realized gain selectivity. To validate the predicted results, a prototype operating at theX- band frequencies has been fabricated monolithically using the 3-D selective laser melting printing technique. The measured results are in very good agreement with the simulated results, showing a flat gain response of 7.0 ± 0.2 dBi from 9.5–10.5 GHz with very good out-of-band selectivity. The fractional bandwidth is about 10% at 10 GHz when S <sub>11</sub> = -20 dB. Compared to the previously designed filtering antennas, the proposed design has the advantages of stronger out-of-band gain selectivity and low profile.

Topics
  • impedance spectroscopy
  • selective laser melting