Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bumgarner, John

  • Google
  • 1
  • 8
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Large-Area MEMS Tunable Fabry-Perot Filters for Multi/Hyperspectral Infrared Imaging33citations

Places of action

Chart of shared publication
Dell, John
1 / 20 shared
Martyniuk, Mariusz
1 / 16 shared
Tripathi, Dhirendra Kumar
1 / 2 shared
Ren, Yongling
1 / 3 shared
Mao, Haifeng
1 / 1 shared
Antoszewski, Jaroslaw
1 / 13 shared
Silva, Dilusha
1 / 4 shared
Faraone, Lorenzo
1 / 31 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Dell, John
  • Martyniuk, Mariusz
  • Tripathi, Dhirendra Kumar
  • Ren, Yongling
  • Mao, Haifeng
  • Antoszewski, Jaroslaw
  • Silva, Dilusha
  • Faraone, Lorenzo
OrganizationsLocationPeople

article

Large-Area MEMS Tunable Fabry-Perot Filters for Multi/Hyperspectral Infrared Imaging

  • Dell, John
  • Bumgarner, John
  • Martyniuk, Mariusz
  • Tripathi, Dhirendra Kumar
  • Ren, Yongling
  • Mao, Haifeng
  • Antoszewski, Jaroslaw
  • Silva, Dilusha
  • Faraone, Lorenzo
Abstract

<p>This paper reports on a MEMS tunable Fabry-Perot filter technology capable of achieving nanometer-scale optical flatness across a large mirror area of up to square centimeters without any extraneous stress management techniques. The device employs a single-layer tensile silicon or germanium membrane for the suspended top mirror. Optical characterization of the fabricated single-membrane-based tunable filters for the SWIR, MWIR, and LWIR is presented. The fabricated 1000-μm dimension Si-membrane-based SWIR and MWIR filters are demonstrated with a wavelength tuning range of 1.77-2.42 and 4.1-4.9 μm, respectively, while the fabricated 200-μm-dimension Ge-membrane-based LWIR filter is demonstrated with a wavelength tuning range of 8.5-11.46 μm. All these filters are shown to achieve transmission characteristics that exceed the optical requirements for multispectral imaging applications. A large-area 1-cm dimension Si membrane-based SWIR tunable Fabry-Perot filter for multispectral imaging is demonstrated as a proof-of-concept, showing an excellent surface flatness in the order of 25 nm and an excellent optical uniformity with transmission peak wavelength variability less than 3% across the entire 1-cm dimension optical imaging area. In addition, the optical transmission behavior of the Fabry-Perot filters based on three-layer Si or Ge-based air-spaced DBRs for SWIR, MWIR, and LWIR is modeled, demonstrating that these filters can achieve a fine spectral resolution of several tens of nanometers suitable for hyperspectral imaging applications.</p>

Topics
  • impedance spectroscopy
  • surface
  • laser emission spectroscopy
  • Silicon
  • Germanium