People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bahri, Mounib
University of Liverpool
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recyclingcitations
- 2024Radiation Effects in Uranium Nitride and Zirconium Nitride
- 2024Superionic lithium transport via multiple coordination environments defined by two-anion packingcitations
- 2023Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recyclingcitations
- 2022MOF-Derived Multi-heterostructured Composites for Enhanced Photocatalytic Hydrogen Evolution: Deciphering the Roles of Different Componentscitations
- 2022A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrodecitations
- 2021An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti)citations
- 2020Zinc-blende group III-V/group IV epitaxy: Importance of the miscutcitations
- 2020Phase selective synthesis of nickel silicide nanocrystals in molten salts for electrocatalysis of the oxygen evolution reactioncitations
- 2019Bimetallic Phosphide (Ni,Cu) 2 P Nanoparticles by Inward Phosphorus Migration and Outward Copper Migrationcitations
- 2019Bimetallic Phosphide (Ni,Cu) 2 P Nanoparticles by Inward Phosphorus Migration and Outward Copper Migrationcitations
- 2019Kinked silicon nanowires: Superstructures by metal assisted chemical etchingcitations
- 2019Kinked Silicon Nanowires: Superstructures by Metal-Assisted Chemical Etchingcitations
- 2019Bringing Conducting Polymers to High Order: Toward Conductivities beyond 10 5 S cm −1 and Thermoelectric Power Factors of 2 mW m −1 K −2citations
- 2016Thermal Management of Monolithic Versus Heterogeneous Lasers Integrated on Siliconcitations
- 2015Quantitative evaluation of microtwins and antiphase defects in GaP/Sinanolayers for a III–V photonics platform on siliconusing a laboratory Xray diffraction setupcitations
- 2015Quantitative evaluation of microtwins and antiphase defects in GaP/Sinanolayers for a III–V photonics platform on siliconusing a laboratory Xray diffraction setupcitations
Places of action
Organizations | Location | People |
---|
article
Thermal Management of Monolithic Versus Heterogeneous Lasers Integrated on Silicon
Abstract
Thermal management is one of the most important issues for today's microelectronics design. Photonics is expected to bring significant advantages to future beyond-CMOS microprocessors in terms of heat dissipation with the use of optical interconnects but thermal management of integrated laser sources remains an issue. In this paper, we investigate the thermal properties of various III-V semiconductor laser sources integrated on silicon. Monolithic (through GaSb epitaxy) and heterogeneous (through InP/SOI bonding) integration approaches are studied with both ridge and microresonators laser geometries. It is first shown that the presence of dislocations in monolithically integrated structures, as determined by transmission electron microscopy, have no impact on thermal conductivities. Thermal mappings of the devices are then computed. It is demonstrated that heterogeneous lasers are thermally more insulated from the surrounding CMOS than monolithic lasers (especially at the back side), which avoids photonic-induced hot spots formation on the chip, but can degrade the overall laser performances.