People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chen, Xia
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Silicon erasable waveguides and directional couplers by germanium ion implantation for configurable photonic circuitscitations
- 2018Germanium implanted photonic devices for post-fabrication trimming and programmable circuitscitations
- 2018Ion implantation in silicon for trimming the operating wavelength of ring resonatorscitations
- 2018Real-time monitoring and gradient feedback enable accurate trimming of ion-implanted silicon photonic devicescitations
- 2017Towards autonomous testing of photonic integrated circuitscitations
- 2017Phase trimming of Mach-Zehnder Interferometers by laser annealing of germanium implanted waveguidescitations
- 2017Post-fabrication phase trimming of Mach-Zehnder Interferometers by laser annealing of germanium implanted waveguidescitations
- 2017Trimming of ring resonators via ion implantation in siliconcitations
- 2014Silicon-based photonic integration beyond the telecommunication wavelength rangecitations
- 2014Long-wavelength silicon photonic integrated circuits
- 2014Mid-IR heterogeneous silicon photonicscitations
Places of action
Organizations | Location | People |
---|
article
Silicon-based photonic integration beyond the telecommunication wavelength range
Abstract
In this paper we discuss silicon-based photonic integrated circuit technology for applications beyond the telecommunication wavelength range. Silicon-on-insulator and germanium-on-silicon passive waveguide circuits are described, as well as the integration of III-V semiconductors, IV-VI colloidal nanoparticles and GeSn alloys on these circuits for increasing the functionality. The strong nonlinearity of silicon combined with the low nonlinear absorption in the mid-infrared is exploited to generate picosecond pulse based supercontinuum sources, optical parametric oscillators and wavelength translators connecting the telecommunication wavelength range and the mid-infrared.