People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Price, Jonathan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021Compact chirped-pulse amplification systems based on highly Tm3+ doped germanate fibercitations
- 2008Developing single-mode tellurite glass holey fiber for infrared nonlinear applications
- 2008Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applicationscitations
- 2007Mid-IR supercontinuum generation from non-silica microstructured optical fiberscitations
- 2006Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 µm - 5 µmcitations
- 2006Optimisation of cascaded Yb fiber amplifier chains using numerical-modellingcitations
- 2002Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fibre lasercitations
Places of action
Organizations | Location | People |
---|
article
Mid-IR supercontinuum generation from non-silica microstructured optical fibers
Abstract
In this paper, the properties of nonsilica glasses and the related technology for microstructured fiber fabrication are reviewed. Numerical simulation results are shown using the properties of nonsilica microstructured fibers for mid-infrared (mid-IR) supercontinuum generation when seeding with near-IR, 200 fs pump pulses. In particular, bismuth glass small-core fibers that have two zero-dispersion wavelengths (ZDWs) are investigated, and efficient mid-IR generation is enabled by phase-matching of a 2.0 µm seed across the upper ZDW into the 3-4.5 µm wavelength range. Fiber lengths considered were 40 mm. Simulation results for a range of nonsilica large-mode fibers are also shown for comparison.